Perez et al.
JOCFeatured Article
FIGURE 6. Design of a directed alkyne-alkyne reductive cross-coupling.
preassociation of a reagent with a substrate as a means to
render a reaction intramolecular.11 Reactions that proceed by
such preorganization often provide products with exquisite
levels of regio- and stereoselection as a function of the highly
ordered transition state geometries through which they pro-
ceed. As such, we aimed to develop a directed version of a
reductive cross-coupling reaction between alkynes.12
While a number of metals are known to participate in metalla-
cycle-mediated C-C bond formation, our selection of a reac-
tion system suitable for the synthetic problem at hand was
based on (1) the ability of metal alkoxides to undergo rapid and
reversible ligand exchange16 and (2) the previously demon-
strated reactivity of titanium alkoxide reagents in metallacycle-
mediated C-C bond forming reactions.17
Due to the density of heteroatom functionality typically
present in stereochemically complex natural products that
possess the trisubstituted 1,3-diene substructure of interest
(Figure 1),13 we sought a reductive coupling process capable
of being directed by neighboring hydroxy substituents.14,15
Our initial reaction design is outlined in Figure 6. We
speculated that an alkoxide proximal to the preformed tita-
nium-alkyne complex of an internal alkyne may associate
with the neighboring metal center in the transition state for
C-C bond formation.18 If so, we would anticipate that the
(11) For recent reviews of directed reactions, see: (a) Hoveyda, A. H.;
Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307–1370. (b) Catellani, M.;
Chiusoli, G. P.; Costa, M. J. Organomet. Chem. 1995, 500, 69–80. (c) Breit, B.
Chem.;Eur. J. 2000, 6, 1519–1524.
(12) For an olefin-directed Ni-mediated regioselective reductive coupling
of alkynes with aldehydes, see: (a) Mahandru, G. M.; Liu, G.; Montgomery,
J. J. Am. Chem. Soc. 2004, 126, 3698–3699. (b) Miller, K. M.; Luanphai-
sarnnont, T.; Molinaro, C.; Jamison, T. F. J. Am. Chem. Soc. 2004, 126,
4130–4131. (c) Miller, K. M.; Jamison, T. F. J. Am. Chem. Soc. 2004, 126,
15342–15343.
(13) For recent reviews of the isolation and synthesis of natural products
from polyketide biosynthetic origin, see: (a) Blunt, J. W.; Copp, B. R.; Hu,
W.-P.; Nunro, M. H. G.; Northcote, P. T.; Prinsep, M. R. Nat. Prod. Rep.
2008, 25, 35–94. (b) Morris, J. C.; Phillips, A. J. Nat. Prod. Rep. 2008, 25, 95–
117. (c) Davies-Coleman, M. T.; Garson, M. J. Nat. Prod. Rep. 1998, 15, 477–
493. (d) Polyketides: Biosynthesis, Biological Activity, and Genetic Engineer-
ing. Baerson, S. R., Ed. 2006, American Chemical Society. 296.
(14) For examples of hydroxyl-directed carbometalation reactions based
on titanium, see: (a) Coleman, R. A.; O’Doherty, C. M.; Tweedy, H. E.;
Harris, T. V.; Thompson, D. W. J. Organomet. Chem. 1976, 107, C15–C17.
(b) Brown, D. C.; Nichols, S. A.; Gilpin, A. B.; Thompson, D. W. J. Org.
Chem. 1979, 44, 3457–3461. (c) Ewing, J. C.; Ferguson, G. S.; Moore, D. W.;
Schultz, F. W.; Thompson, D. W. J. Org. Chem. 1985, 50, 2124–2128. For
hydroxyl-directed carbometalation based on magnesium, see: (d) Eisch, J. J.;
Merkley, J. H. J. Organomet. Chem. 1969, 20, P27–P31. (e) Eisch, J. J.
J. Organomet. Chem. 1980, 200, 101–117. (f) Richey, H. G.; Von Rein, F. W.
J. Organomet. Chem. 1969, 20, P32–P35. (g) Hoveyda, A. H.; Xu, Z. J. Am.
Chem. Soc. 1991, 113, 5079–5080. (h) Hoveyda, A. H.; Xu, Z.; Morken, J. P.;
Houri, A. F. J. Am. Chem. Soc. 1991, 113, 8950–8952. (i) Itami, K.; Mitsudo,
K.; Yoshida, J. Angew. Chem., Int. Ed. 2001, 40, 2337–2339. (j) Itami, K.;
Kamei, T.; Yoshida, J. J. Am. Chem. Soc. 2003, 125, 14670–14671. For
directed carbometalation based on tantalum, see: (k) Takai, K.; Yamada,
M.; Odaka, H.; Utimoto, K. J. Org. Chem. 1994, 59, 5852–5853. For directed
carbometalation based on aluminum/zirconium, see: (l) Ma, S.; Negishi,
E.-I. J. Org. Chem. 1997, 62, 784–785.
(15) For examples of alkoxide-directed reductive cross-coupling that does
not rely on preformation of a presumed fused bicyclic metallacyclopropene,
see: (a) Ryan, J.; Micalizio, G. C. J. Am. Chem. Soc. 2006, 128, 2764–2765.
(b) Reichard, H. A.; Micalizio, G. C. Angew. Chem., Int. Ed. 2007, 46, 1440–
1443. (c) McLaughlin, M.; Takahashi, M.; Micalizio, G. C. Angew. Chem.,
Int. Ed. 2007, 46, 3912–3914. (d) Shimp, H. L.; Micalizio, G. C. Chem.
Commun. 2007, 4531–4533. (e) Takahashi, M.; Micalizio, G. C. J. Am. Chem.
Soc. 2007, 129, 7514–7516. (f) McLaughlin, M.; Shimp, H. L.; Navarro, R.;
Micalizio, G. C. Synlett 2008, 735–738. These reports describe reactions
whereby selectivity arises from treatment of a preformed Ti-alkyne complex
with an unsaturated alkoxide. A sequence of ligand exchange and intramo-
lecular carbometalation are associated with the high levels of selectivity
observed in these processes. The reaction described in this manuscript derives
selectivity from a distinct process, whereby preformation of a Ti-alkyne
complex on the π-component containing the tethered alkoxide is followed by
intermolecular carbometalation with a terminal alkyne.
(16) (a) Sharpless, K. B.; Michaelson, R. C. J. Am. Chem. Soc. 1973, 95,
6136–6137. (b) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102,
5974–5976. (c) Katsuki, T.; Martin, V. S. Org. React. 1996, 48, 1–299.
(d) Sharpless, K. B.; Woodard, S. S.; Finn, M. G. Pure Appl. Chem. 1983,
55, 1823–1836. (e) Woodard, S. S.; Finn, M. G.; Sharpless, K. B. J. Am.
Chem. Soc. 1991, 113, 106–113.
(17) For reviews of titanium alkoxide-mediated C-C bond formation,
see: (a) Kulinkovich, O. G.; de Meijere, A. Chem. Rev. 2000, 100, 2789–2834.
(b) Sato, F.; Urabe, H.; Okamoto, S. Chem. Rev. 2000, 100, 2835–2886.
(18) This design was constrained by the requirement of pregenerating a
Ti-alkyne complex of the internal alkyne (rather than the terminal alkyne).
Attempted reductive coupling of terminal alkynes with aldehydes has been
reported to be unsuccessful: (a) Harada, K.; Urabe, H.; Sato, F. Tetrahedron
Lett. 1995, 36, 3203–3206. Surprisingly, some examples have reported that
related coupling reactions with terminal alkynes, that likely proceed by
formation of a titanium-alkyne complex are successful: (b) Yamaguchi,
S.; Jin, R.-Z.; Tamao, K.; Sato, F. J. Org. Chem. 1998, 63, 10060–10062. For
the generation of metallated titanacyclopropenes from terminal alkynes, see:
(c) Averbuj, C.; Kaftanov, J.; Marek, I. Synlett 1999, 1939–1941.
7214 J. Org. Chem. Vol. 74, No. 19, 2009