Published on Web 08/28/2009
Modification of Symmetrically Substituted Phthalocyanines
Using Click Chemistry: Phthalocyanine Nanostructures by
Nanoimprint Lithography
Xiaochun Chen,† Jayan Thomas,‡ Palash Gangopadhyay,‡ Robert A. Norwood,‡
N. Peyghambarian,‡ and Dominic V. McGrath*,†
Department of Chemistry and College of Optical Sciences, The UniVersity of Arizona,
Tucson, Arizona 85721
Received July 9, 2009; E-mail: mcgrath@u.arizona.edu
Abstract: Phthalocyanines (Pcs) are commonly applied to advanced technologies such as optical limiting,
photodynamic therapy (PDT), organic field-effect transistors (OFETs), and organic photovoltaic (OPV)
devices, where they are used as the p-type layer. An approach to Pc structural diversity and the incorporation
of a functional group that allows fabrication of solvent resistant Pc nanostructures formed by using a newly
developed nanoimprint by melt processing (NIMP) technique, a variant of standard nanoimprint lithography
(NIL), is reported. Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), a click chemistry reaction,
serves as an approach to structural diversity in Pc macrocycles. We have prepared octaalkynyl Pc 1b and
have modified this Pc using the CuAAC reaction to yield four Pc derivatives 5a-5d with different peripheral
substituents on the macrocycle. One of these derivatives, 5c, has photo-cross-linkable cinnamate residues,
and we have demonstrated the fabrication of robust cross-linked photopatterned and imprinted nanostruc-
tures from this material.
Introduction
solid state properties including self-association and interfacial
behavior are dependent on substituents on the periphery of the
Phthalocyanines (Pcs) are commonly applied to advanced
technologies such as optical limiting,1 photodynamic therapy
(PDT),2 organic field-effect transistors (OFETs),3 and organic
photovoltaic (OPV) devices,4-6 where they are used as the
p-type layer. Critical to the performance of Pc materials in these
applications is the condensed phase morphology that they adopt
and the nanostructures into which they can be fabricated. Pc
chromophore.7 Extremely subtle structural variations in disk-
like chromophores can lead to dramatic and effective alteration
of their condensed phase organization, with a resultant effect
on the electronic interactions between adjacent molecules.8 To
study the influence of Pc structure on condensed phase
morphology, a library of different Pcs must be created to survey
the effects of structural alterations. However, while the extent
of structural variation of Pc materials to date is quite impres-
sive,9 there is a need for general methods of producing Pc
materials with structural diversity, especially with substituents
that will not readily survive the relatively harsh conditions of
Pc chromophore synthesis.10
† Department of Chemistry.
‡ College of Optical Sciences.
(1) (a) Dini, D.; Barthel, M.; Hanack, M. Eur. J. Org. Chem. 2001, 3759–
3769. (b) O’Flaherty, S. M.; Hold, S. V.; Cook, M. J.; Torres, T.;
Chen, Y.; Hanack, M.; Blau, W. J. AdV. Mater. 2003, 15, 19–32. (c)
Chen, Y.; Hanack, M.; Araki, Y.; Ito, O. Chem. Soc. ReV. 2005, 34,
517. (d) de la Torre, G.; Vazquez, P.; Agullo-Lopez, F.; Torres, T.
Chem. ReV. 2004, 104, 3723.
Here we disclose an approach to Pc structural diversity based
on “click chemistry”.11 We have chosen the copper(I)-catalyzed
azide-alkyne cycloaddition (CuAAC)12 as an approach to
structural diversity in Pc macrocycles. A click chemistry
reaction, CuAAC has proven useful for the synthesis of novel
polymers and materials in many laboratories13 and is an ideal
(2) (a) Bonnett, R. Chem. Soc. ReV. 1995, 24, 19–33. (b) Pandey, R. K.;
Zheng, G. Porphyrin Handbook 2000, 6, 157–230. (c) Moreira, L. M.;
dos Santos, F. V.; Lyon, J. P.; Maftoum-Costa, M.; Pacheco-Soares,
C.; da Silva, N. S. Aust. J. Chem. 2008, 61, 741–754.
(3) Bouvet, M. Anal. Bioanal. Chem. 2006, 384, 366–373.
(4) Shaheen, S. E.; Ginley, D. S.; Jabbour, G. E. MRS Bull. 2005, 30,
10–19.
(5) (a) Yoo, S.-Y.; Domercq, B.; Donley, C. L.; Carter, C.; Xia, W.; Minch,
B. A.; O’Brien, D. F.; Armstrong, N. R.; Kippelen, B. SPIE: Organic
PhotoVoltaics IV 2004, 5215, 71–78. (b) Brumbach, M.; Placencia,
D.; Armstrong, N. R. J. Phys. Chem. C 2008, 112, 3142.
(6) (a) Xue, J.; Rand, B. P.; Uchida, S.; Forrest, S. R. J. Appl. Phys. 2005,
98, 124903. (b) Xue, J.; Rand, B. P.; Uchida, S.; Forrest, S. R. AdV.
Mater. 2005, 17, 66–71. (c) Thompson, B. C.; Fre´chet, J. M. J. Angew.
Chem., Int. Ed. 2008, 47, 58–77. (d) Ma, W.; Yang, C.; Gong, X.;
Lee, K.; Heeger, A. J. AdV. Funct. Mater. 2005, 15, 1617–1622. (e)
Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.;
Yang, Y. Nat. Mater. 2005, 4, 864–868. (f) Reyes-Reyes, M.; Kim,
K.; Carroll, D. L. Appl. Phys. Lett. 2005, 87, 083506. (g) Xue, J. G.;
Uchida, S.; Rand, B. P.; Forrest, S. R. Appl. Phys. Lett. 2004, 84,
3013–3015.
(7) Elemans, J. A. A. W.; van Hameren, R.; Nolte, R. J. M.; Rowan, A. E.
AdV. Mater. 2006, 18, 1251–1266.
(8) Huijser, A.; Savenije, T. J.; Kotlewski, A.; Picken, S. J.; Siebbeles,
L. D. A. AdV. Mater. 2006, 18, 2234+.
(9) de la Torre, G.; Claessens, C. G.; Torres, T. Chem. Commun. 2007,
2000–2015.
(10) de la Torre, G.; Claessens, C. G.; Torres, T. Eur. J. Org. Chem. 2000,
2821–2830.
(11) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed.
2001, 40, 2004–2021.
(12) (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem., Int. Ed. 2002, 41, 2596–2599. (b) Tornoe, C. W.;
Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057–3064.
(13) Meldal, M.; Tornøe, C. W. Chem. ReV. 2008, 108, 2952.
9
13840 J. AM. CHEM. SOC. 2009, 131, 13840–13843
10.1021/ja905683g CCC: $40.75 2009 American Chemical Society