excellent model systems for the study of vibrational
self-trapping and energy transport in b-sheet-like structures.
Erik Schwartz would like to thank Nico Veling for providing
the schematic drawing in Fig. 1. The Technology Foundation
STW, NanoNed, The Council for the Chemical Sciences of the
Netherlands Organisation for Scientific Research, and the
Royal Academy for Arts and Sciences are acknowledged for
financial support.
Notes and references
1 A. S. Davydov, J. Theor. Biol., 1973, 38, 559–569; A. S. Davydov,
J. Theor. Biol., 1977, 66, 377–387; A. Scott, Phys. Rep., 1992, 217,
1–67.
2 J. Edler, R. Pfister, V. Pouthier, C. Falvo and P. Hamm, Phys. Rev.
Lett., 2004, 93, 106405.
Fig. 3 Absorption change upon NH-stretch excitation of LD-PIAA
and of random copolymer 2 (red line 1 : 15 NH : O). Disruption
of the hydrogen-bond network completely eliminates vibrational
self-trapping.
3 For a reference to the involvement of H-bonding in electron
transfer processes in peptides, see: Y. T. Long, E. Abu-Rhayem
and H. B. Kraatz, Chem.–Eur. J., 2005, 11, 5186–5194.
4 G. Careri, U. Buontempo, F. Carta, E. Gratton and A. C. Scott,
Phys. Rev. Lett., 1983, 51, 304–307; G. Careri, U. Buontempo,
F. Galluzzi, A. C. Scott, E. Gratton and E. Shyamsunder, Phys.
Rev. B, 1984, 30, 4689–4702; G. B. Blanchet and C. R. Fincher,
Phys. Rev. Lett., 1985, 54, 1310–1312; D. M. Alexander, Phys. Rev.
Lett., 1985, 54, 138–141; D. M. Alexander and J. A. Krumhansl,
Phys. Rev. B, 1986, 33, 7172–7185; W. Fann, L. Rothberg,
M. Roberson, S. Benson, J. Madey, S. Etemad and R. Austin,
Phys. Rev. Lett., 1990, 64, 607–610; S. W. Johnson, M. Barthes,
J. Eckert, R. K. McMullan and M. Muller, Phys. Rev. Lett., 1995,
74, 2844; J. Edler, P. Hamm and A. C. Scott, Phys. Rev. Lett.,
2002, 88, 67403; J. Edler and P. Hamm, J. Chem. Phys., 2002, 117,
2415–2424; J. Edler and P. Hamm, J. Chem. Phys., 2003, 119,
2709–2715; J. Edler and P. Hamm, Phys. Rev. B, 2004, 69, 214301;
P. Hamm and J. Edler, Phys. Rev. B, 2006, 73, 94302.
5 M. D. Yoder, N. T. Keen and F. Jurnak, Science, 1993, 260,
1503–1507.
see ESIw). Epimerisation was further confirmed by chiral
HPLC, which showed two retention times for the isocyanide
(7.32 min and 8.29 min) (Fig. S3, ESIw). In spite of the
epimerisation behaviour of monomer 3, which would result
in two helices of opposite handedness, the self-trapping could
still be studied since the hydrogen-bonding network would
be identical. Therefore, a random copolymerisation based
on isocyanides 3 and DL-IAA (4) (with a 15 : 1 ratio of
3
:
4)7,10 was carried out at room temperature with
Ni(ClO4)2Á6H2O as a catalyst. The resulting polymer 2 was
precipitated from diethyl ether, obtained as powder,
a
characterised by H and 13C NMR and IR spectroscopy and
1
investigated by vibrational spectroscopy (ESIw).
6 R. J. M. Nolte, Chem. Soc. Rev., 1994, 23, 11–19; M. Suginome
and Y. Ito, Adv. Polym. Sci., 2004, 171, 77–136.
The pump–probe signals of the NH : O random copolymer
2 (Fig. 3), when compared to those of the regular b-sheet helix,
reveal that disruption of the hydrogen-bonded NHÁ Á ÁOC
chains in the b-sheet structure leads to a dramatic change in
the vibrational response. Upon disturbance of the hydrogen-
bond structure the NH-stretch vibrational response becomes
completely regular (exhibiting a single excited-state absorption
peak) and shows no evidence of self-trapping.
7 J. J. L. M. Cornelissen, J. J. J. M. Donners, R. de Gelder,
W. S. Graswinckel, G. A. Metselaar, A. E. Rowan,
N. A. Sommerdijk and R. J. M. Nolte, Science, 2001, 293, 676–680.
8 P. Samori, C. Ecker, I. Goessl, P. A. J. de Witte, J. J. L.
M. Cornelissen, G. A. Metselaar, M. B. J. Otten, A. E. Rowan,
R. J. M. Nolte and J. P. Rabe, Macromolecules, 2002, 35,
5290–5294.
9 P. Bodis, E. Schwartz, J. J. L. M. Cornelissen, A. E. Rowan, R. J.
M. Nolte and S. Woutersen, in press.
10 P. C. J. Kamer, M. C. Cleij, R. J. M. Nolte, T. Harada, A. M.
F. Hezemans and W. Drenth, J. Am. Chem. Soc., 1988, 110,
1581–1587; B. Hong and M. A. Fox, Macromolecules, 1994, 27,
5311–5317; R. B. King, L. Borodinsky and M. J. Greene, J. Polym.
Sci., Part A: Polym. Chem., 1987, 25, 2165–2173; T. J. Deming and
B. M. Novak, Macromolecules, 1991, 24, 326–328; H. J. Kitto,
E. Schwartz, M. Nijemeisland, M. Koepf, J. J. L. M. Cornelissen,
A. E. Rowan and R. J. M. Nolte, J. Mater. Chem., 2008, 18,
5615–5624.
11 P. Bodis, R. Timmer, S. Yeremenko, W. J. Buma, J. S. Hannam,
D. A. Leigh and S. Woutersen, J. Phys. Chem. C, 2007, 111,
6798–6804.
12 S. Mukamel, Principles of Nonlinear Optical Spectroscopy, Oxford
University Press, New York, 1995.
Our studies show that NH-stretch vibrational self-trapping
occurs not only in a-helices but also in synthetic b-sheet helical
polymers. This implies that delocalisation (spreading out) of
the vibrational excitation can be eliminated, which is one
of the requirements for vibrational energy transport by means of
Davydov solitons.1,2 At present, the role of Davydov solitons
in energy transport in proteins is still under debate, and
needs further investigations. The high persistence length of
peptide-based polyisocyanides, combined with their structural
integrity, allows one to further tailor their hydrogen-bonding
structure, making these synthetically well-accessible polymers
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 4675–4677 | 4677