alkene would also provide an interesting diversity-oriented
strategy. Furthermore, as the reported oxidative coupling
requires stoichiometric amounts of Pd salts,5 we planned also
to develop a greener variant, catalytic in palladium.8
The first step of our retrosynthetic strategy retraces
Chapman’s seminal paper, wherein carpanone is derived from
carpanization9 of propenyl sesamol 3 but as a catalytic
variant. Methodological differentiation of our route comes
next, deriving 3 from a regioselective cross-coupling based
propenylation of sesamol 2 (Scheme 2).
Scheme 4. Preparation of Boronate 5
Scheme 2. Envisaged Retrosynthesis of Carpanone
was initially borylated14 to give the corresponding boronate
5 in excellent yield.
The Suzuki-Miyaura cross-coupling step using (E)-1-
bromopropene was next studied (Table 1). The influence of
Introduction of the propenyl moiety via transition-metal-
catalyzed ortho-directed C-H activation was tested first.
However, use of Pd- and Rh-catalyzed conditions known to
promote ortho functionalization of phenols met with failure
under a wide range of reported experimental conditions
(Scheme 3).10,11
Table 1. Optimization of the Suzuki-Miyaura Cross-Coupling
base
entry (3 equiv)
catalyst
(10 mol %)
yielda
(%)
Scheme 3. Attempted Ortho C-H Activation of Sesamol
solvent T (°C)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
KOH
PdCl2(PPh3)2
PdCl2(PPh3)2
PdCl2(PPh3)2
PdCl2(PPh3)2
PdCl2(PPh3)2
PdCl2(PPh3)2
PdCl2(PPh3)2
PdCl2(PPh3)2
PdCl2(dppf)
PdCl2(dppp)
Pd(dba)2/Xantphosb
PdCl2(PPh3)2
PdCl2(PPh3)2
PdCl2(PPh3)2
PdCl2(PPh3)2
Tol
Tol
Tol
Tol
Tol
Tol
Tol
Tol
Tol
Tol
Tol
DME
Et2O
THF
DMF
20
80
80
80
80
80
110
20
20
20
20
20
20
20
20
27
10
25
0
0
0
24
60
20
0
MeONa
tBuOK
NaOAc
K2CO3
Et3N
tBuOK
tBuOK
tBuOK
tBuOK
tBuOK
tBuOK
tBuOK
tBuOK
tBuOK
Ortho halogenation of sesamol was next con-
sidered.12Accordingly, standard O-silylation of sesamol and
treatment of the resulting ether with NIS gave smoothly
iodide 4 in excellent yield and total regioselectivity (Scheme
4).13 Stille and Negishi cross-coupling reactions with the
corresponding metalated propenyl derivative led to unsatis-
factory results under a range of conditions. We thus focused
on the Suzuki-Miyaura cross-coupling. To this purpose, 4
0
23
13
4
27
a Isolated yields. b 4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene.
(5) (a) Chapman, O. L.; Engel, M. R.; Springer, J. P.; Clardy, J. C.
J. Am. Chem. Soc. 1971, 93, 6697–6698. See also: (b) Majetich, L. G.;
Wheless, K. In MicrowaVe Heating in Organic Chemistry: An Update;
Kingston, H. M., Haswell, S. J., Eds.; ACS: Washington, D.C., 1997;
Chapter 8, pp 455-501.
the base was first examined using PdCl2(PPh3)2 as the
palladium source and toluene as the solvent. Only alkoxide
bases and KOH allowed formation of some coupled product
(entries 1-3), albeit in a low yield, whereas NaOAc, K2CO3
(6) (a) Lindsley, C. W.; Chan, L. K.; Goess, B. C.; Joseph, R.; Shair,
M. D. J. Am. Chem. Soc. 2000, 122, 422–423. (b) Baxendale, I. R.; Lee,
A.-L.; Ley, S. V. J. Chem. Soc., Perkin Trans. 1 2002, 1850–1857. (c)
Goess, B. C.; Hannoush, R. N.; Chan, L. K.; Kirchhausen, T.; Shair, M. D.
J. Am. Chem. Soc. 2006, 128, 5391–5403. (d) Daniels, R. N.; Fadeyi, O. O.;
Lindsley, C. W. Org. Lett. 2008, 10, 4097–4100.
(10) (a) Bedford, R. B.; Coles, S. J.; Hursthouse, M. B.; Limmert, M. E.
Angew. Chem., Int. Ed. 2003, 42, 112–114. (b) Bedford, R. B.; Hazelwood,
S. L.; Horton, P. N.; Hursthouse, M. B. Dalton Trans. 2003, 4164–4174.
(c) Bedford, R. B.; Limmert, M. E. J. Org. Chem. 2003, 68, 8669–8682.
(d) Oi, S.; Watanabe, S.-I.; Fukita, S.; Inoue, Y. Tetrahedron Lett. 2003,
44, 8665–8668. (e) Satoh, T.; Inoh, J.; Kawamura, T.; Kawamura, Y.; Miura,
N.; Masakatsu, N. Bull. Chem. Soc. Jpn. 1998, 71, 2239–2246. (f) Satoh,
T.; Kawamura, Y.; Miura, N.; Nomura, M. Angew. Chem., Int. Ed. 1997,
36, 1740–1742. (g) Dunina, V.; Gorunova, N.; Stepanova, A.; Zykov, A.;
Livantsov, V.; Grishin, K.; Churakov, V.; Jyudmila, G. Tetrahedron:
Asymmetry 2007, 18, 2011–2015.
(7) During the redaction of this paper, introduction of the propenyl
moiety via a Wittig condensation was disclosed: Fadeyi, O. O.; Daniels,
R. N.; DeGuire, S. M.; Lindsley, C. W Tetrahedron Lett. 2009, 50, 3084–
3087.
(8) During the course of this work, a paper appeared dealing with a
Cu-catalyzed oxidative coupling. See ref 6d.
(9) For convenience, we propose to define “carpanization” as the
conversion of 2-propenylsesamol into carpanone. This oxidative coupling
is the result of more than one elementary step, and its mechanism appears
to be reagent dependent (see the text).
Org. Lett., Vol. 11, No. 19, 2009
4379