Article
Organometallics, Vol. 29, No. 16, 2010 3531
been used. The major limitation of these processes is that the
metallic catalysts employed are often expensive and/or not
easily available. Meanwhile, most of the catalysts used are
limited to low-valent metal complexes or a mixture of
high-valent transition metal complexes and metal reduc-
tants.4b,8b,11a,12 For a long time, the use of lanthanides was
disregarded within this context, mostly because they are
lacking in conventional oxidative-addition/reductive-elimi-
nation processes, which are often regarded as the basis for
the design of metal-catalyzed cyclotrimerizations of alkynes.
The insertion chemistry of organolanthanide complexes is an
intriguing platform for catalytic design.14 Significant efforts
have been devoted to the development of methods for the
efficient construction of complex cycles through the choice of
appropriate intra- and intermolecular di- or polyinsertion
reactions of organolanthanides as key steps, because of their
high bond-forming efficiency, mild reaction conditions, and
inherent simple experimental procedures without the produc-
tion of waste.15 Although organolanthanide-catalyzed reactions
of terminal alkynes have been investigated extensively, only
dimers and/or oligomers were obtained.16 The major reason can
be attributed to the similar reactivity toward the triple bond
of alkynes between monoinsertion species and diinsertion ones.
If a coordination insertion process is viable for a monoinsertion
intermediate, it usually has a tendency for multiple insertions
to further take place. As a result, less active organolanthanide
catalytic systems preferentially give rise to dimers, whereas the
more active ones lead to the formation of oligomers. We have
recently shownthat organolanthanide complexes can undergo
diinsertion reactions with isocyanates17 and nitriles.18 As part
of a continuing effort in our laboratory toward the develop-
ment of new insertions of organolanthanide compounds and
their applications in organic synthesis,19 we became interested
in the possibility of controlling the chemo- and regioselective
triinsertion of alkynes into the lanthanide-carbon bond and
thus developing a new method for synthesis of trisubstituted
benzenes from alkynes.
It is well known that cooperative or successive interaction
of two different metals with the substrate is a useful tool for
modifying the catalytic activities and selectivities and im-
parting to the substrate new reactions that cannot be
achieved by monometallic catalyst systems.20 Considering
that transition metals often coordinate more strongly to
alkynes than lanthanides and thus should inhibit the abstrac-
tion of enynes, we conjectured on such a synergistic scenario
in controlling the insertion degree of alkynes into the lantha-
nide-acetylide bond and subsequent cyclization by the
additional π-coordination of transition metal Lewis acids
and hoped that such investigation of the cooperative effect of
lanthanides and transition metals might lead to the develop-
ment of catalyst design for cyclotrimerization of alkynes. As
a preliminary testing of the concept, we herein report an
unprecedented Y(III)/Fe(III) bimetallic catalyst system for
cyclotrimerization of terminal alkynes, in which the Fe3þ ion
most probably acts as a π-coordinative Lewis acid. The
present work demonstrates that completely different beha-
vior in the Ln[N(TMS)2]3-catalyzed transformation of term-
inal alkynes can be expected depending on the presence of
trivalent iron salts and opens the way toward new develop-
ments in catalytic organolanthanide chemistry.
(11) (a) Williams, A. C.; Sheffels, P.; Sheehan, D.; Livinghouse, T.
Organometallics 1989, 8, 1566–1567. (b) Kakeya, M.; Fujihara, T.; Kasaya,
T.; Nagasawa, A. Organometallics 2006, 25, 4131–4137.
ꢀ
(12) Joosten, A.; Soueidan, M.; Denhez, C.; Harakat, D.; Helion, F.;
Namy, J. L.;Vasse, J. L.;Szymoniak, J.Organometallics 2008, 27, 4152–4157.
(13) (a) Farnetti, E.;Marsich, N. J. Organomet. Chem. 2004, 689, 14–17.
(b) Takeuchi, R.; Tanaka, S.; Nakaya, Y. Tetrahedron Lett. 2001, 42, 2991–
2994.
(14) For reviews: (a) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37,
673–686. (b) Molander, G. A.; Romero, J. A. C. Chem. Rev. 2002, 102,
2161–2185.
(15) For selected examples: (a) Li, Y. W; Marks, T. J. J. Am. Chem.
Soc. 1996, 118, 707–708. (b) Li, Y. W.; Marks, T. J. J. Am. Chem. Soc. 1998,
120, 1757–1771. (c) Molander, G. A.; Pack, S. K. J. Org. Chem. 2003, 68,
9214–9220. (d) Molander, G. A.; Corrette, C. P. J. Org. Chem. 1999, 64,
9697–9703.
(16) (a) Nishiura, M.; Hou, Z. M.; Wakatsuki, Y.; Yamaki, T.;
Miyamoto, T. J. Am. Chem. Soc. 2003, 125, 1184–1185. (b) Komeyama,
K.; Kawabata, T.; Takehira, K.; Takaki, K. J. Org. Chem. 2005, 70, 7260–
7266. (c) Heeres, H. J.; Heeres, A.; Teuben, J. H. Organometallics 1990, 9,
1508–1510. (d) Nishiura, M.; Hou, Z. J. Mol. Catal. A 2004, 213, 101.
(17) (a) Sun, Y.; Zhang, Z. X.; Wang, X.; Li, X. Q.; Weng, L. H.;
Zhou, X. G. Dalton Trans. 2010, 39, 221–226. (b) Sun, Y.; Zhang, Z. X.;
Wang, X.; Li, X. Q.; Weng, L. H.; Zhou, X. G. Organometallics 2009, 28,
6320–6330.
Results and Discussion
Readily available homoleptic bis(trimethylsilyl)amides of
yttrium and lanthanide metals are currently attracting consider-
able attention as highly efficient catalysts for various organic
transformations. In the past decade, systematic exploration of
Ln[N(TMS)2]3 chemistry has offered a wide range of useful
methods for organic synthesis. Particular emphasis has been fo-
cused on the activation of carbon-hydrogen and heteroatom-
hydrogen bonds. Successful transformations now include the
Tishchenko reaction,21 cross-Aldol reactions,22 coupling reac-
tions of isocyanides23 and nitriles with terminal alkynes,19k
dimerization of terminal alkynes,16 guanylation of amines,24
hydroamination,25 hydrosilylation,26 hydroalkyoxylation27 of
(20) Shibasaki, M.; Kanai, M.; Matsunagam, S.; Kumagai, N. Acc.
Chem. Res. 2009, 42, 1117–1127, and references therein.
(21) (a) Berberich, H.; Roesky, P. W. Angew. Chem., Int. Ed. 1998, 37,
1569–1571. (b) B€urgstein, M. R.; Berberich, H.; Roesky, P. W. Chem.;Eur.
J. 2001, 7, 3078–3085.
(18) Zhang, J.; Han, Y. N.; Han, F. Y.; Chen, Z. X.; Weng, L. H.;
Zhou, X. G. Inorg. Chem. 2008, 47, 5552–5554.
(19) (a) Zhou, X. G.; Huang, Z. E.; Cai, R. F.; Zhang, L. B.; Zhang,
L. X. Organometallics 1999, 18, 4128. (b) Zhou, X. G.; Zhang, L. B.; Zhu,
M.; Cai, R. F.; Weng, L. H. Organometallics 2001, 20, 5700. (c) Zhang, J.;
Ruan, R. Y.; Shao, Z. H.; Cai, R. F.; Weng, L. H.; Zhou, X. G. Organome-
tallics 2002, 21, 1420. (d) Zhang, J.; Cai, R. F.; Weng, L. H.; Zhou, X. G.
Organometallics 2003, 22, 5385. (e) Zhang, C. M.; Liu, R. T.; Zhou, X. G.;
Chen, Z. X.; Weng, L. H.; Lin, Y. H. Organometallics 2004, 23, 3246. (f)
Zhang, C. M.; Liu, R. T.; Zhang, J.; Chen, Z. X.; Zhou, X. G. Inorg. Chem.
2006, 45, 5867. (g) Pi, C. F.; Liu, R. T.; Zheng, P. Z.; Chen, Z. X.; Zhou, X. G.
Inorg. Chem. 2007, 46, 5252. (h) Pi, C. F.; Zhu, Z. Y.; Weng, L. H.; Chen,
Z. X.; Zhou, X. G. Chem. Commun. 2007, 2190. (i) Pi, C. F.; Zhang, Z. X.;
Pang, Z.; Zhang, J.; Luo, J.; Chen, Z. X.; Weng, L. H.; Zhou, X. G.
Organometallics 2007, 26, 1934. (j) Liu, R. T.; Zhang, C. M.; Zhu, Z. Y.;
Luo, J.; Zhou, X. G.; Weng, L. H. Chem.;Eur. J. 2006, 12, 6940. (k) Shen,
Q. S.; Huang, W.; Wang, J. L.; Zhou, X. G. Organometallics 2008, 27, 301–
303. (l) Zhou, X. G.; Ma, H. Z.; Huang, X. Y.; You, X. Z. J. Chem. Soc.,
Chem. Commun. 1995, 2483.
(22) Zhang, L. J.; Wang, S. W.; Sheng, E. H.; Zhou, S. L. Green Chem.
2005, 7, 683–686.
(23) Komeyama, K.; Sasayama, D.; Kawabata, T.; Takehira, K.;
Takaki, K. J. Org. Chem. 2005, 70, 10679–10687.
(24) (a) Du, Z.; Li, W. B.; Zhu, X. H.; Xu, F.; Shen, Q. J. Org. Chem.
2008, 73, 8966–8972. (b) Zhang, W. X.; Hou, Z. M. Org. Biomol. Chem.
2008, 6, 1720–1730. (c) Li, Q. H.; Wang, S. W.; Zhou, S. L.; Yang, G. S.; Zhu,
X. C.; Liu, Y. Y. J. Org. Chem. 2007, 72, 6763–6767.
(25) (a) Li, Y. W.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 1757–
1771. (b) Li, Y. W.; Marks, T. J. Organometallics 1996, 15, 3770–3772. (c)
Motta, A.; Fragala, I. L.; Marks, T. J. Organometallics 2006, 25, 5533–5539.
(d) Li, Y. W.; Marks, T. J. J. Am. Chem. Soc. 1996, 118, 9295–9306. (e)
Hong, S.; Tian, S.; Metz, M. V.; Marks, T. J. J. Am. Chem. Soc. 2003, 125,
14768–14783. (f) Kim, Y. K.; Livinghouse, T.; Bercawb, J. E. Tetrahedron
Lett. 2001, 42, 2933–2935.
ꢁ