7986
A. Miyazaki et al. / Bioorg. Med. Chem. 17 (2009) 7978–7986
Goto, T. Biochem. Cell. Biol. 1991, 69, 115; (f) Hayashi, Y.; Isobe, M.; Mutoh, N.;
Supplementary data
Nakagawa, C. W.; Kawabata, M. Methods Enzymol. 1991, 205, 348; (g) Isobe, M.;
Hayashi, Y.; Imai, K.; Nakagawa, C. W.; Uyakul, D.; Mutoh, N.; Goto, T. In
Synthesis, Structure and Properties of Metallothioneins, Phytochelatins and Metal-
Thiolate Complexes; Stillman, M. J., Shaw, C. F., Suzuki, K. T., Eds.; VCH
Publishers: New York, 1992; pp 227–256.
Figures S1–S3 and MS/MS spectra of peptides T6, T10, and T21
are included as supplementary materials. Supplementary data
associated with this article can be found, in the online version, at
12. Isobe, M.; Kai, H.; Kurahashi, T.; Suwan, S.; Pitchayawasin-Thapphasaraphong,
S.; Franz, T.; Tani, N.; Higashi, K.; Nishida, H. ChemBioChem 2006, 7, 1590.
13. (a) Zhang, Z.; Barlow, J. N.; Baldwin, J. E.; Schofield, C. J. J. Biochem. 1997, 36,
15999; (b) Cao, W.; Barany, F. J. Biol. Chem. 1998, 273, 33002; (c) Hlavaty, J. J.;
Benner, J. S.; Hornstra, L. J.; Schildkraut, I. Biochemistry 2000, 39, 3097; (d)
Hovorka, S. W.; Williams, T. D.; Schöneich, C. Anal. Biochem. 2002, 300, 206; (e)
Lim, J.; Vachet, R. W. Anal. Chem. 2003, 75, 1164; (f) Lim, J.; Vachet, R. W. Anal.
Chem. 2004, 76, 3498.
14. (a) Kurono, M.; Shimomura, A.; Isobe, M. Tetrahedron 2004, 60, 1773; (b) Isobe,
M.; Kurono, M.; Tsuboi, K.; Takai, A. Chem. Asian J. 2007, 2, 377; (c) Sydnes, M.
O.; Isobe, M. Tetrahedron 2007, 63, 2593; (d) Sydnes, M. O.; Kuse, M.; Kurono,
M.; Shimomura, A.; Ohinata, H.; Takai, A.; Isobe, M. Bioorg. Med. Chem. 2008, 16,
1747.
References and notes
1. Dudev, T.; Lim, C. Chem. Rev. 2003, 103, 773.
2. (a) Cohen, P. Proc. R. Soc. Ser. B 1988, 234, 115; (b) Johnson, L. N.; Barford, D.
Annu. Rev. Biophys. Biomol. Struct. 1993, 22, 199; (c) Cohen, P. T. J. Cell Sci. 2002,
115, 241; (d) Jackson, M. D.; Denu, J. M. Chem. Rev. 2001, 101, 2313.
3. (a) Goldberg, J.; Huang, H.; Kwon, Y.; Greengard, P.; Nairn, A. C.; Kuriyan, J.
Nature 1995, 376, 745; (b) Kelker, M. S.; Page, R.; Peti, W. J. Mol. Biol. 2009, 385,
11.
4. (a) King, M. M.; Huang, C. Y. J. Biol. Chem. 1984, 259, 8847; (b) Chu, Y.; Lee, E. Y.
C.; Schlender, K. K. J. Biol. Chem. 1995, 271, 2574; (c) Griffith, J. P.; Kim, J. L.; Kim,
E. E.; Sintchak, M. D.; Thomson, J. A.; Fitzgibbon, M. J.; Fleming, M. A.; Caron, P.
R.; Hsiao, K.; Navia, M. A. Cell 1995, 82, 507; (d) Egloff, M.-P.; Cohen, P. T. W.;
Reinemer, P.; Barford, D. J. Mol. Biol. 1995, 254, 942; (e) Chu, Y.; Lee, E. Y. C.;
Schlender, K. K. J. Biol. Chem. 1996, 271, 2574.
15. (a) Claiborne, A.; Yeh, J. I.; Mallett, T. C.; Luba, J.; Crane, E. J., III; Vharrier, V.;
Parsonage, D. Biochemistry 1999, 38, 15407; (b) Wang, Y.; Vivekananda, S.;
Men, L.; Zhang, Q. J. Am. Soc. Mass Spectrom. 2004, 15, 697.
16. Calculation of oxidation yields are performed using the following function,
where TX = signal intensity in the ion chromatogram:
5. (a) Stadtman, E. R. Annu. Rev. Biochem. 1993, 62, 797; (b) Xu, G.; Chance, M. R.
Chem. Rev. 2007, 107, 3514.
6. Kurahashi, T.; Miyazaki, A.; Suwan, S.; Isobe, M. J. Am. Chem. Soc. 2001, 123,
9268.
TX þ 16 Da
TX þ 16 Da ¼
:
TX þ ðTX þ 16 DaÞ þ ðTX þ 32 DaÞ þ ðTX þ 48 DaÞ ꢁ 100
7. (a) Uchida, K.; Kawakishi, S. J. Biol. Chem. 1994, 269, 2405–2410; (b)
Bridgewater, J. D.; Vachet, R. W. Anal. Biochem. 2005, 34, 122–130; (c)
Bridgewater, J. D.; Vachet, R. W. Anal. Chem. 2005, 77, 4649; (d) Bridgewater,
J. D.; Lim, J.; Vachet, R. W. J. Am. Soc. Mass Spectrom. 2006, 17, 1552.
8. Sawyer, D. T. Coord. Chem. Rev. 1997, 165, 297.
9. (a) Goldstei, S.; Meyerstein, D.; Czapski, G. Free Radical Biol. Med. 1993, 15, 435;
(b) Archibald, S. F.; Tyree, C. Arch. Biochem. Biophys. 1987, 256, 638; (c) Ali, S. F.;
Duhart, H. M.; Newport, G. D.; Lipe, G. W.; Slikker, W. Neurodegeneration 1995,
4, 329; (d) Takeda, A. Brain Res. Rev. 2003, 41, 79.
10. Bridgewater, J. D.; Lim, J.; Vachet, R. W. Anal. Chem. 2006, 78, 2432.
11. (a) Kondo, N.; Isobe, M.; Imai, K.; Goto, T. Tetrahedron Lett. 1983, 24, 925; (b)
Kondo, N.; Imai, K.; Isobe, M.; Goto, T. Tetrahedron Lett. 1984, 25, 3869; (c)
Kondo, N.; Isobe, M.; Imai, K.; Goto, T. Agric. Biol. Chem. 1985, 49, 71; (d)
Hayashi, Y.; Nakagawa, C. W.; Uyakul, D.; Imai, K.; Isobe, M.; Goto, T. Biochem.
Cell. Biol. 1988, 66, 288; (e) Hayashi, Y.; Nakagawa, C. W.; Mutoh, N.; Isobe, M.;
17. Ascorbate reduces Cu2+ to Cu+. Cu+ reacts with H2O2 and generates ROS via a
Fenton-like reaction (see Ref. 5 for literature regarding Fenton and Fenton-like
reactions) and Cu2+. When excess of ascorbate is used, which is the case in the
work described herein, Cu+ is regenerated upon reaction with another
equivalent of ascorbate.
18. Kurahashi, T.; Isobe, M. unpublished results.
19. Duncan, K. E. R.; Kirby, C. W.; Stillman, M. J. FEBS J. 2008, 275, 2227.
20. None of the Cys amino acid residues in PP1 are involved in disulfide bonds, see
Ref. 3.
21. Kita, A.; Matsunaga, S.; Takai, A.; Kataiwa, H.; Wakimoto, T.; Fusetani, N.; Isobe,
M.; Miki, K. Structure 2002, 10, 715.
22. Takai, A.; Mieskes, G. Biochem. J. 1991, 275, 233.