258
S. Riahi et al. / Spectrochimica Acta Part A 74 (2009) 253–258
5. Conclusion
[16] D. An, Z. Yue, R.T. Chen, Appl. Phys. Lett. 72 (1998) 2806–2808.
[17] C.H. Evans, Trends Biochem. Sci. 8 (1983) 445–449.
[18] J.C. Zhang, S.J. Xu, K. Wang, S.F. Yu, Chin. Sci. Bull. 48 (2003) 2170–2175.
[19] S.P. Fricker, Chem. Soc. Rev. 35 (2006) 524–533.
[20] Y. Ran, G.E. Fanucci, Anal. Biochem. 382 (2008) 132–134.
[21] M.S. Aqueel, V. Pathak, A.K. Pathak, Tetrahedron Lett. 49 (2008) 7157–7160.
[22] S. Fu, J. Biotechnol. 136 (2008) 193–200.
[23] H. Li, J. Kang, L. Ding, F. Lu, Y. Fang, J. Photochem. Photobiol. A 197 (2008)
226–231.
[24] W.-S. Li, M.-J. Teng, X.-R. Jia, B.-B. Wang, J.-M. Yeh, Y. Wei, Tetrahedron Lett. 49
(2008) 1988–1992.
Lanthanide ions generally exist together in trace amounts, and
separation of them with non-expensive methods has always been of
highinterest. Inthisstudy, weusedonederivativeofDansyl(DMNP)
that had high fluorescence and UV–vis properties, as a ligand, and
titred it with all Ln ions to verify the ligand–Lns complexations. The
results showed that the applied derivative of Dansyl has interaction
with five Lanthanides [Ln = La (III), Gd (III), Tb (III), Dy (III) and Er
(III)]. We calculated the formation constants of the complexations
applying both spectrofluorometric and spectrophotometric meth-
ods, in order to realize which Ln ion DMNP interacts with most
selectively. Conclusions showed that the applied Dansyl responses
are mainly selective towards the Er3+ ion. The employed method-
ology was confirmed by calculating the Stern–Volmer quenching
constant values, as the Ksv values sequence was in satisfactory
agreement with the calculated Kf of complexation values.
[25] R. Miao, Q.-Y. Zheng, C.-F. Chen, Z.-T. Huang, Tetrahedron Lett. 45 (2004)
4959–4962.
[26] T. Kikuchi, M. Narita, F. Hamada, Tetrahedron 57 (2001) 9317–9324.
[27] M.R. Ganjali, P. Norouzi, F. Faridbod, S. Riahi, J. Ravanshad, J. Tashkhourian, M.
Salavati-Niasari, M. Javaheri, IEEE Sens. J. 7 (2007) 544–550.
[28] S. Riahi, M.R. Ganjali, P. Norouzi, F. Jafari, Sens. Actuators B 132 (2008) 13–19.
[29] S. Riahi, M.R. Ganjali, A.B. Moghaddam, P. Norouzi, Spectrochim. Acta Part A 70
(2008) 94–98.
[30] M.F. Mousavi, M. Shamsipur, S. Riahi, M.S. Rahmanifar, Anal. Sci. 18 (2002)
137–140.
[31] M.R. Ganjali, P. Norouzi, F.S. Mirnaghi, S. Riahi, F. Faridbod, J. IEEE Sens. 7 (2007)
1138–1144.
These results can be employed in constructing specific sensors
of Er (III) that can be helpful in separating the Ln ions existing in
trace amounts in a medium together, which is of high value.
[32] S. Riahi, M.R. Ganjali, A.B. Moghaddam, P. Norouzi, Spectrochim. Acta Part A 71
(2008) 1390–1396.
[33] F. Faridbod, M.R. Ganjali, B. Larijani, P. Norouzi, S. Riahi, F. Sadat Mirnaghi,
Sensors 7 (2007) 3119–3135.
[34] F. Faridbod, M.R. Ganjali, R. Dinarvand, P. Norouzi, S. Riahi, Sensors 8 (2008)
1645–1703.
Acknowledgement
[35] S. Riahi, M.F. Mousavi, M. Shamsipur, H. Sharghi, Electroanalysis 15 (2003)
1561–1565.
[36] S. Riahi, E. Pourbasheer, M.R. Ganjali, P. Norouzi, J. Hazard. Mater. 166 (2009)
853–859.
[37] M. Elstner, P. Hobza, T. Frauenheim, S. Suhai, E. Kaxiras, J. Chem. Phys. 114 (2001)
5149–5155.
We gratefully acknowledge the support of this work by the
Institute of Petroleum Engineering, Tehran University Research
Councils.
[38] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic,
Plenum Publishers, New York, 1999.
References
[39] F. Faridbod, M.R. Ganjali, P. Norouzi, Anal. Lett. 13 (2008) 2322–2343.
[40] M. Idowua, A. Ogunsipe, T. Nyokong, Spectrochim. Acta Part A 68 (2007)
995–999.
[41] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Aca-
demic Publishers, Plenum Press, New York, 1999.
[42] O. Stern, M. Volmer, Phys. Z. 20 (1919) 183–188.
[43] M.R. Hadjmohamadia, M.J. Chaichi, P. Biparva, K. Alizadeh, Spectrochim. Acta
Part A 70 (2008) 358–361.
[44] M. González-Lorenzo, C. Platas-Iglesias, F. Avecilla, S. Faulkner, S.J.A. Pope, A.
De Blas, T. Rodríguez-Blas, Inorg. Chem. 44 (2005) 4254–4262.
[45] E.D. Pillai, K.S. Molek, M.A. Duncan, Chem. Phys. Lett. 405 (2005) 247–251.
[46] J.L. Tilson, C. Naleway, M. Seth, R. Shepard, A.F. Wagner, W.C. Ermler, J. Chem.
Phys. 121 (2004) 5661–5675.
[47] C. Boehme, B. Coupez, G. Wipff, J. Phys. Chem. A 106 (2002) 6487–6498.
[48] Molecule-based magnetic materials, in: M. Turnbull, T. Sugimoto, L. Thompson
(Eds.), ACS Symposium Series 644, Washington, DC, 1996.
[49] M.W. Schimdt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen,
S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Mont-
gomery, J. Comput. Chem. 14 (1993) 1347–1355.
[1] S. Mishra, Coord. Chem. Rev. 252 (2008) 1996–2025.
[2] X. Zheng, C. Sun, S. Lu, F. Liao, S. Gao, L. Jin, Eur. J. Inorg. Chem. 2004 (2004)
3262–3268.
[3] Z.-Z. Yan, Y. Tang, W.-S. Liu, M.-Y. Tan, J. Lumin. 128 (2008) 1394–1398.
[4] H. Tsukube, S. Shinoda, Chem. Rev. 102 (2002) 2389–2404.
[5] N. Sabbatini, M. Guardigli, J.-M. Lehn, Coord. Chem. Rev. 123 (1993) 201–228.
[6] S.T. Frey, M.L. Gong, W. de, W. Horrocks, Inorg. Chem. 33 (1994) 3229–3234.
[7] N. Sato, S. Shinkai, J. Chem. Soc. Perkin Trans. 2 (1993) 621–624.
[8] F.S. Richardson, Chem. Rev. 82 (1982) 541–552.
[9] J.-C.G. Bunzli, in: J.-C.G. Bunzli, G.R. Choppin (Eds.), Ln Probesin Life, Chemical
and Earth Sciences, Elsevier, Amsterdam, 1989.
[10] B.S. Panigrahi, Spectrochim. Acta Part A 56 (2000) 1337–1344.
[11] L. Song, J. Hu, J. Wang, X. Liua, Z. Zhen, Photochem. Photobiol. Sci. 7 (2008)
689–693.
[12] M.R. Robinson, M.B. O’Regan, G.C. Bazan, Chem. Commun. 17(2000)1645–1646.
[13] C. Seward, N.-X. Hu, S. Wang, J. Chem. Soc. Dalton Trans. 2 (2001) 134–136.
[14] J. Wang, R. Wang, J. Yang, Z. Zheng, M. Carducci, T. Cayou, N. Peyghambarian,
G.E. Jabbour, J. Am. Chem. Soc. 123 (2001) 6179–6180.
[15] L.H. Slooff, A. Polman, S.I. Klink, G.A. Hebbink, L. Grave, F.C.J.M. van Veggel, D.N.
Reinhoudt, J.W. Hofstraat, Opt. Mater. 14 (2000) 101–107.