Gourdet et al.
JOCArticle
resulting in an unwieldy mixture of isomers. With advances in
cross-coupling technology, another attractive method to prepare
enamides from their parent N-H compounds is via palladium-8
or copper-catalyzed9 N-alkenylation reactions.10 By using this
approach, however, the problems of regio- and stereocontrol are
now transferred to the synthesis of the alkenyl coupling partners.
A further means to access enamides involving C-N bond
formation is the catalytic hydroamidation of terminal alkynes.11
Although both E-andZ-enamides may be prepared selectively,11
this method is currently limited to the preparation of β-mono-
substituted products.
A second major strategy for enamide preparation involves
the use of ynamide12 starting materials, since developments
in alkynyliodonium salt chemistry13 along with copper-14
and iron-catalyzed15 alkynylation methodology have meant
that a variety of ynamides are now readily available. Repre-
sentative intermolecular examples of this approach include
hydroboration of ynamides followed by Suzuki-Miyaura
coupling16a or homologation,16b hydro- or silylstannylation
of ynamides followed by Stille coupling17a,b or lithiation-
electrophilic trapping,17c hydrohalogenation of ynamides
followed by Sonogashira coupling,18 and various reductive
coupling reactions.19 Relevant intramolecular examples in-
clude domino Heck-Suzuki-Miyaura reactions,20 keteni-
minium cyclizations,21 ring-closing enyne metathesis,22 and
platinum-catalyzed cycloisomerizations.23 While these reac-
tions generally work quite well, they are often restricted to
the production of only certain classes of products, or require
rather specialized substrates.
Although enamides may also be prepared using a number
of other methods,24 we recently became interested in the
carbometalation25 of ynamides as a general route to multi-
substituted enamides. As the majority of carbometalation
reactions occur in a syn-fashion,25 issues of selectivity during
ynamide carbometalation are reduced to one of regioselec-
tivity, provided isomerization does not occur. In addition,
utilization of the alkenylmetal intermediates that are pre-
sumably generated during ynamide carbometalation in
further functionalization reactions should allow the prepara-
tion of more highly substituted products. At least in principle
therefore, ynamide carbometalation should represent one of
the simplest and most flexible approaches to multisubsti-
tuted enamides.
In a seminal study, Marek and co-workers described
intermolecular carbocupration and copper-catalyzed carbo-
magnesiation of two ynamides,26 and this methodology has
been employed by others during a study of aza-Claisen
rearrangements.27 More recently, the ynamide carbocupra-
tion variant was exploited in an interesting approach to
access aldol products containing all-carbon quaternary
stereocenters.28 Despite these developments, there remains
scope for improvement. For example, in the more attractive
copper-catalyzed carbomagnesiation variant, the presence of
base- and nucleophile-sensitive functional groups on the
ynamide is restricted due to the excess Grignard reagent in
solution. Furthermore, the prospects of sensitive functional
(9) For examples of enamide synthesis relying upon copper-catalyzed
C-N bond formation, see: (a) Ogawa, T.; Kiji, T.; Hayami, K.; Suzuki, H.
Chem. Lett. 1991, 1443–1446. (b) Shen, R.; Porco, J. A., Jr. Org. Lett. 2000,
2, 1333–1336. (c) Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L. Org.
Lett. 2003, 5, 3667–3669. (d) Han, C.; Shen, R.; Su, S.; Porco, J. A., Jr. Org.
Lett. 2004, 6, 27–30. (e) Coleman, R. S.; Liu, P.-H. Org. Lett. 2004, 6, 577–
580. (f) Pan, X.; Cai, Q.; Ma, D. Org. Lett. 2004, 6, 1809–1812. (g) Shen, L.;
Hsung, R. P.; Zhang, Y.; Antoline, J. E.; Zhang, X. Org. Lett. 2005, 7, 3081–
3084. (h) Hu, T.; Li, C. Org. Lett. 2005, 7, 2035–2038. (i) Sun, C.; Camp, J. E.;
Weinreb, S. M. Org. Lett. 2006, 8, 1779–1781. (j) Yang, L.; Deng, G.; Wang,
D.-X.; Huang, Z.-T.; Zhu, J.-P.; Wang, M.-X. Org. Lett. 2007, 9, 1387–1390.
(k) Lam, P. Y. S.; Vincent, G.; Bonne, D.; Clark, C. G. Tetrahedron Lett.
2003, 44, 4927–4931. (l) Bolshan, Y.; Batey, R. A. Angew. Chem., Int. Ed.
2008, 47, 2109–2112.
(10) For relevant reviews, see: (a) Dehli, J. R.; Legros, J.; Bolm, C. Chem.
Commun. 2005, 973–986. (b) Evano, G.; Blanchard, N.; Toumi, M. Chem.
Rev. 2008, 108, 3054–3131.
(11) (a) Kondo, T.; Tanaka, A.; Kotachi, S.; Watanabe, Y. J. Chem. Soc.,
Chem. Commun. 1995, 413–414. (b) Goossen, L. J.; Rauhaus, J. E.; Deng, G.
Angew. Chem., Int. Ed. 2005, 44, 4042–4045. (c) Goossen, L. J.; Blanchot, M.;
Brinkmann, C.; Goossen, K.; Karch, R.; Rivas-Nass, A. J. Org. Chem. 2006,
71, 9506–9509. (d) Yudha, S.; Kuninobu, Y.; Takai, K. Org. Lett. 2007, 9,
5609–5611. (e) Goossen, L. J.; Salih, K. S. M.; Blanchot, M. Angew. Chem.,
Int. Ed. 2008, 47, 8492–8495. (f) Goossen, L. J.; Arndt, M.; Blanchot, M.;
Rudolphi, F.; Menges, F.; Niedner-Schatteburg, G. Adv. Synth. Catal. 2008,
350, 2701–2707.
(18) Mulder, J. A.; Kurtz, K. C. M.; Hsung, R. P.; Coverdale, H.;
Frederick, M. O.; Shen, L.; Zificsak, C. A. Org. Lett. 2003, 5, 1547–1550.
(19) (a) Saito, N.; Katayama, T.; Sato, Y. Org. Lett. 2008, 10, 3829–3832.
(b) Tanaka, R.; Hirano, S.; Urabe, H.; Sato, F. Org. Lett. 2003, 5, 67–70.
(c) Hirano, S.; Tanaka, R.; Urabe, H.; Sato, F. Org. Lett. 2004, 6, 727–729.
(20) Couty, S.; Liegault, B.; Meyer, C.; Cossy, J. Tetrahedron 2006, 62,
3882–3895.
(12) For general reviews of ynamide chemistry, see: (a) Zificsak, C. A.;
Mulder, J. A.; Hsung, R. P.; Rameshkumar, C.; Wei, L.-L. Tetrahedron 2001,
57, 7575–7606. (b) Mulder, J. A.; Kurtz, K. C. M.; Hsung, R. P. Synlett 2003,
1379–1390. (c) Katritzky, A. R.; Jiang, R.; Singh, S. K. Heterocycles 2004, 63,
1455–1475.
(13) For example, see: (a) Feldman, K. S.; Bruendl, M. M.; Schildknegt,
K.; Bohnstedt, A. C. J. Org. Chem. 1996, 61, 5440–5452. (b) Witulski, B.;
Stengel, T. Angew. Chem., Int. Ed. 1998, 37, 489–492. (c) Witulski, B.;
(21) Zhang, Y.; Hsung, R. P.; Zhang, X.; Huang, J.; Slafer, B. W.; Davis,
A. Org. Lett. 2005, 7, 1047–1050.
(22) (a) Huang, J.; Xiong, H.; Hsung, R. P.; Rameshkumar, C.; Mulder,
J. A.; Grebe, T. P. Org. Lett. 2002, 4, 2417–2420. (b) Saito, N.; Sato, Y.;
Mori, M. Org. Lett. 2002, 4, 803–805. (c) Mori, M.; Wakamatsu, H.; Saito,
N.; Sato, Y.; Narita, R.; Sato, Y.; Fujita, R. Tetrahedron 2006, 62, 3872–
3881.
(23) Marion, F.; Coulomb, J.; Courillon, C.; Fensterbank, L.; Malacria,
M. Org. Lett. 2004, 6, 1509–1511.
€
Gossmann, M. Chem. Commun. 1999, 1879–1880. (d) Tanaka, K.; Takeishi,
K.; Noguchi, K. J. Am. Chem. Soc. 2006, 128, 4586–4587.
(24) For example, see the following and references cited therein: (a) Guan,
Z.-H.; Huang, K.; Yu, S.; Zhang, X. Org. Lett. 2009, 11, 481–483. (b) Savarin,
C. G.; Boice, G. N.; Murry, J. A.; Corley, E.; DiMichele, L.; Hughes, D. Org.
Lett. 2006, 8, 3903–3906. (c) van den Berg, M.; Haak, R. M.; Minnaard, A. J.;
de Vries, A. H. M.; de Vries, J. G.; Feringa, B. L. Adv. Synth. Catal. 2002, 344,
1003–1007. (d) Burk, M. J.; Casy, G.; Johnson, N. B. J. Org. Chem. 1998, 63,
6084–6085. (e) Sato, M. J. Org. Chem. 1961, 26, 770–779.
(25) For general reviews on carbometalation reactions, see: (a) Marek, I.;
Chinkov, N.; Banon-Tenne, D. In Metal-Catalyzed Cross-Coupling Reactions;
de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, Germany, 2004;
pp 395-478. (b) Marek, I.; Normant, J. F. In Transition Metals for Organic
Synthesis; Beller, M., Bolm, C., Eds.; Wiley-VCH, Weinheim, Germany, 1998;
pp 514-522.
(26) Chechik-Lankin, H.; Livshin, S.; Marek, I. Synlett 2005, 2098–2010.
(27) (a) Yasui, H.; Yorimitsu, H.; Oshima, K. Chem. Lett. 2007, 36, 32–
33. (b) Yasui, H.; Yorimitsu, H.; Oshima, K. Bull. Chem. Soc. Jpn. 2008, 81,
373–379.
(28) Prakash Das, J.; Chechik, H.; Marek, I. Nature Chem. 2009, 1, 128–
132.
(14) (a) Frederick, M. O.; Mulder, J. A.; Tracey, M. R.; Hsung, R. P.;
Huang, J.; Kurtz, K. C. M.; Shen, L.; Douglas, C. J. J. Am. Chem. Soc. 2003,
125, 2368–2369. (b) Dunetz, J. R.; Danheiser, R. L. Org. Lett. 2003, 5, 4011–
4014. (c) Zhang, Y.; Hsung, R. P.; Tracey, M. R.; Kurtz, K. C. M.; Vera, E. L.
Org. Lett. 2004, 6, 1151–1154. (d) Riddell, N.; Villeneuve, K.; Tam, W. Org.
Lett. 2005, 7, 3681–3684. (e) Zhang, X.; Zhang, Y.; Huang, J.; Hsung, R. P.;
Kurtz, K. C. M.; Oppenheimer, J.; Peterson, M. E.; Sagamanova, I. K.; Shen,
L.; Tracey, M. R. J. Org. Chem. 2006, 71, 4170–4177. (f) Hamada, T.; Ye, X.;
Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 833–835. (g) Coste, A.; Karthikeyan,
G.; Couty, F.; Evano, G. Angew. Chem., Int. Ed. 2009, 48, 4381–4385.
(15) Yao, B.; Liang, Z.; Niu, T.; Zhang, Y. J. Org. Chem. 2009, 74, 4630–
4633.
€
(16) (a) Witulski, B.; Buschmann, N.; Bergstrasser, U. Tetrahedron 2000,
56, 8473–8480. (b) Hoffmann, R. W.; Bruckner, D. New J. Chem. 2001, 25,
€
369–373.
(17) (a) Timbart, L.; Cintrat, J. C. Chem.;Eur. J. 2002, 8, 1637–1640.
(b) Buissonneaud, D.; Cintrat, J.-C. Tetrahedron Lett. 2006, 47, 3139–3143.
(c) Naud, S.; Cintrat, J.-C. Synthesis 2003, 1391–1397.
7850 J. Org. Chem. Vol. 74, No. 20, 2009