A R T I C L E S
Nicolaou et al.
platensimide A (4),10a which retains the right-hand structural
motif of platensimycin (1), was also found to be inactive, as
was homoplatensimide A (5).10b The relative stereochemistry
of the 2,4-diaminobutyrate unit of platensimide A (4) was
verified by the semisynthesis of 4 from 2.10a Homoplatensimide
A (5) and its methyl ester, homoplatensimide A methyl ester
(6), contain a carboxylate moiety with the complete C20 skeleton
of a diterpene, in keeping with the biosynthetic proposal for
these compounds, bound through an amide linkage to
glutamide.10b Platensimycins B1-B3 (7-9, Figure 1), three other
natural congeners of platensimycin (1) with modest changes in
the benzoic acid domain of the molecule, also show poor activity
due to the lack of a free carboxylic acid moiety.10c Platencin
(10, Figure 1) was also isolated from a strain of S. platensis.11
Although it shows an overall structural similarity with platen-
simycin (1), particularly in the common aromatic portion, the
latter compound has a less-oxygenated ketolide domain. Pla-
tencin (10) possesses a biological profile similar to that of
platensimycin (1) but, surprisingly, a slightly different mech-
anism of action.11
The novel and intricate chemical structure and vitally
important biological activity of platensimycin (1) made it an
attractive target for total synthesis, and a number of groups have
reported their synthetic studies toward this end. Following our
initial reports on the total synthesis of (()-platensimycin [(()-
1]12a and, later, of the natural (-)-enantiomer [(-)-1],12b several
groups reported alternative elegant approaches.12c-k Addition-
ally, our research group and others have prepared a number of
biologically active analogues of platensimycin.13 We present
here an improved synthesis of platensimycin (1) and a full
account of our studies on the total synthesis of this fascinating
target as well as the related compounds (2-7, 9) sharing its
Figure 1. Molecular structures of platensimycin (1) and related natural
products (2-10).
(11) (a) Wang, J.; et al. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 7612–
7616. (b) Jayasuriya, H.; Herath, K. B.; Zhang, C.; Zink, D. L.; Basilio,
´
A.; Genilloud, O.; Diez, M. T.; Vicente, F.; Gonzalez, I.; Salazar, O.;
Pelaez, F.; Cummings, R.; Ha, S.; Wang, J.; Singh, S. B. Angew.
Chem., Int. Ed. 2007, 46, 4684–4688.
pathogenic Gram-positive bacterial species. Platensimycin was
also shown to be effective in ViVo, clearing a model S. aureus
infection in mice, although only at relatively high, continuously
administered doses. Interestingly, the fatty acid inhibition
strategy to combat bacteria has recently been challenged on the
basis of experiments that showed their survival does not depend
crucially on their own production of fatty acids since they can
tap on the reserves of their hosts for such essential ingredients.7
Singh and co-workers also disclosed biosynthetic studies on
platensimycin (1), indicating the terpenoid nature of the tetra-
cyclic carboxylate “right-hand” portion,8 as well as preliminary
chemical studies9 and the structures of several related natural
products (Figure 1).10 Platensic acid (2) and its methyl ester
(3) were isolated as natural products in their own right,10a as
might be expected from the biosynthetic pathway, and were
found to have virtually none of the antibiotic activity of
platensimycin (1). The naturally occurring aliphatic amide
(12) (a) Nicolaou, K. C.; Li, A.; Edmonds, D. J. Angew. Chem., Int. Ed.
2006, 45, 7086–7090. (b) Nicolaou, K. C.; Edmonds, D. J.; Li, A.;
Tria, G. S. Angew. Chem., Int. Ed. 2007, 46, 3942–3945. (c) Zou, Y.;
Chen, C.-H.; Taylor, C. D.; Foxman, B. M.; Snider, B. B. Org. Lett.
2007, 9, 1825–1828. (d) Nicolaou, K. C.; Tang, Y.; Wang, J. Chem.
Commun. 2007, 1922–1923. (e) Li, P.; Payette, J. N.; Yamamoto, H.
J. Am. Chem. Soc. 2007, 129, 9534–9535. (f) Lalic, G.; Corey, E. J.
Org. Lett. 2007, 9, 4921–4923. (g) Tiefenbacher, K.; Mulzer, J. Angew.
Chem., Int. Ed. 2007, 46, 8074–8075. (h) Nicolaou, K. C.; Pappo, D.;
Tsang, K. Y.; Gibe, R.; Chen, D. Y.-K. Angew. Chem., Int. Ed. 2008,
47, 944–946. (i) Kim, C. H.; Jang, K. P.; Choi, S. Y.; Chung, Y. K.;
Lee, E. Angew. Chem., Int. Ed. 2008, 47, 4009–4011. (j) Matsuo, J.-
i.; Takeuchi, K.; Ishibashi, H. Org. Lett. 2008, 10, 4049–4052. (k)
Ghosh, A. K.; Xi, K. J. Org. Chem. 2009, 74, 1163–1170. (l) Yun,
S. Y.; Zheng, J.-C.; Lee, D. J. Am. Chem. Soc. 2009, 131, 8413–
8415. For reviews on the synthesis of platensimycin and related
antibiotics, see: (m) Nicolaou, K. C.; Chen, J. S.; Edmonds, D. J.;
Estrada, A. A. Angew. Chem., Int. Ed. 2009, 48, 660–719. (n)
Tiefenbacher, K.; Mulzer, J. Angew. Chem., Int. Ed. 2008, 47, 2548–
2555.
(13) (a) Nicolaou, K. C.; Lister, T.; Denton, R. M.; Montero, A.; Edmonds,
D. J. Angew. Chem., Int. Ed. 2007, 46, 4712–4714. (b) Nicolaou, K. C.;
Tang, Y.; Wang, J.; Stepan, A. F.; Li, A.; Montero, A. J. Am. Chem.
Soc. 2007, 129, 14850–14851. (c) Nicolaou, K. C.; Stepan, A. F.;
Lister, T.; Li, A.; Montero, A.; Tria, G. S.; Turner, C. I.; Tang, Y.;
Wang, J.; Denton, R. M.; Edmonds, D. J. J. Am. Chem. Soc. 2008,
130, 13110–13119. (d) Yeung, Y.-Y.; Corey, E. J. Org. Lett. 2008,
10, 3877–3878. (e) Wang, J.; Lee, V.; Sintim, H. O. Chem.sEur. J.
2009, 15, 2747–2750. (f) Shen, H. C.; Ding, F.; Singh, S. B.;
Parthasarathy, G.; Soisson, S. M.; Ha, S. N.; Chen, X.; Kodali, S.;
Wang, J.; Dorso, K.; Tata, J. R.; Hammond, M. L.; MacCoss, M.;
Colletti, S. L. Bioorg. Med. Chem. Lett. 2009, 19, 1623–1627. (g)
Jang, K. P.; Kim, C. H.; Na, S. W.; Kim, H.; Kang, H.; Lee, E. Bioorg.
Med. Chem. Lett. 2009, 19, 4601–4602.
(7) Brinster, S.; Lamberet, G.; Staels, B.; Trieu-Cuot, P.; Gruss, A.; Poyart,
C. Nature 2009, 458, 83–86.
(8) Herath, K. B.; Attygalle, A. B.; Singh, S. B. J. Am. Chem. Soc. 2007,
129, 15422–15423.
(9) Singh, S. B.; Herath, K. B.; Wang, J.; Tsou, N.; Ball, R. G. Tetrahedron
Lett. 2007, 48, 5429–5433.
(10) (a) Herath, K. B.; Zhang, C.; Jayasuriya, H.; Ondeyka, J. G.; Zink,
D. L.; Burgess, B.; Wang, J.; Singh, S. B. Org. Lett. 2008, 10, 1699–
1702. (b) Jayasuriya, H.; Herath, K. B.; Ondeyka, J. G.; Zink, D. L.;
Burgess, B.; Wang, J.; Singh, S. B. Tetrahedron Lett. 2008, 49, 3648–
3651. (c) Zhang, C.; Ondeyka, J.; Zink, D. L.; Burgess, B.; Wang, J.;
Singh, S. B. Chem. Commun. 2008, 5034–5036.
9
16906 J. AM. CHEM. SOC. VOL. 131, NO. 46, 2009