J.-M. Vate`le / Tetrahedron 66 (2010) 904–912
911
J¼7.2 Hz, Me (E)), 0.91 (t, 1H, J¼7.2 Hz, Me (Z)), 1.21–1.38 (m, 4H, H-
5, H-6 (Z, E)), 1.4–1.52 (m, 4H, H-5, H-6 (Z, E)), 1.95 (s, 3H, Me (Z)),
2.13 (s, 3H, Me (E)), 2.16 (t, 2H, J¼7.6 Hz, H-4 (E)), 2.55 (t, 2H,
J¼7.5 Hz, H-4 (Z)), 5.84 (d, 1H, J¼8.1 Hz, H-2 (E)), 5.86 (d, 1H,
J¼8.1 Hz, H-2 (Z)), 9.93 (d, 1H, J¼8.2 Hz, H-1 (Z)), 9.96 (d, 1H,
J¼8.1 Hz, H-1 (E)). 13C NMR: 14.2 (2C), 17.8, 22.6, 22.9, 25.4, 29.6,
31.3, 32.7, 40.7,127.6,128.7,164.8,165.3,191.1,191.7. HRMS: calcd for
C8H13O (MꢁHꢁ)þ 125.0966; found: 125.09645.
(br s, 1H, H-1). 13C NMR: 14.4, 18.7, 23.1, 27.0, 27.2, 29.5, 37.6, 61.9,
64.8, 67.4. NMR data were in good agreement with those reported
in the literature.43
References and notes
1. For recent examples of the uses of substituted enones in organic synthesis, see:
´
´
(a) Dominguez, M.; Alvarez, R.; Martras, S.; Rarres, J.; Pares, X. R.; de Lera, A. Org.
Biomol. Chem. 2004, 2, 3368–3373; (b) Li, C.-C.; Wang, C.- H.; Liang, B.; Zhang,
X.-H.; Deng, L.-J.; Liang, S.; Chen, J.- H.; Wu, Y.-D.; Yang, Z. J. Org. Chem. 2006, 71,
6992–6997; (c) Chavan, S. P.; Thakkar, M.; Kalbote, U. R. Tetrahedron Lett. 2007,
48, 535–537; (d) Yu, M.; Popchapsky, S. S.; Snider, B. B. J. Org. Chem. 2008, 73,
9065–9074; (e) Michalak, K.; Michalak, M.; Wicha, J. Tetrahedron Lett. 2008, 48,
6807–6809.
4.3.2.13. Cyclohexylideneacetaldehyde (13b). Ether–petroleum
ether (1:6), liquid. IR (film): 1674, 1625 cmꢁ1 1H NMR: 1.64–1.76
.
(m, 6H), 2.3 (t, 2H, J¼6.5 Hz), 2.71 (t, 2H, J¼6.5 Hz), 5.82 (d, 1H,
J¼8.3 Hz), 10.02 (d, 1H, J¼8.3 Hz). 13C NMR: 26.5, 28.5, 29.0, 30.0,
38.5, 125.7, 168.6, 191.0. Its spectroscopic data were in agreement
with those described in the literature.41
2. For examples of natural products bearing a b-disubstituted enone function, see:
(a) Fukinone: Naya, K.; Takagi, I.; Kawaguchi, Y.; Asada, Y.; Hirose, Y.; Shinoda,
N. Tetrahedron 1968, 24, 5871–5879; (b) Hernandulcin: Compadre, C. M.; Pez-
zuto, J. M.; Kinghorn, A. D.; Kamath, S. K. Science 1985, 227, 417–419; (c) Tet-
rahydrodicranenone B: Ichikawa, T.; Namikawa, M.; Yamada, K.; Sakai, K.;
Kondo, K. Tetrahedron Lett. 1983, 24, 3337–3340; (d) Azadiradione: Lavie, D.;
Levy, E. C.; Jain, M. K. Tetrahedron 1971, 27, 3927–3939; (e) Dichotenone A and
B: Ali, M. S.; Pervez, M. K.; Saleem, M.; Ahmed, F. Nat. Prod. Res. 2003, 17, 301–
306; (f) Dolabellatrienone: Miyaoka, H.; Isaji, Y.; Mitome, H.; Yamada, Y. Tet-
rahedron 2003, 59, 61–75; (g) Cyanthiwigin U: Pfeiffer, M. W. B.; Philipps, A. J. J.
Am. Chem. Soc. 2005, 127, 5334–5335; (h) Sarcodictyenone: Yamazaki, T.; Ishi-
kawa, M.; Uemura, M.; Kanda, Y.; Takei, H.; Asaoka, M. Tetrahedron 2008, 64,
1895–1900.
4.3.2.14. 2-t-Butyldiphenyloxymethyl-3-methyl-2-cyclohexen-1-
one (14b). Ether–petroleum ether (1:6), solid: mp 61–63 ꢀC. IR
(neat): 3049, 1667, 1634 cmꢁ1. 1.04 (s, 9H, 3 Me), 1.91 (quintuplet,
2H, J¼6.2 Hz, H-5), 1.99 (s, 3H, Me), 2.32–2.40 (m, 4H, H-6, H-4),
4.47 (s, 2H), 7.4 (m, 6H), 7.7 (m, 4H). 13C NMR: 19.5, 21.5, 22.1, 27.0
(3Me), 33.1, 37.6, 56.3, 127.6 (4C), 129.6 (2C), 134.0 (2C), 134.5, 135.8
(4C), 160.5, 197.6. HRMS calcd for C24H31O2Si (MþHþ) 379.2093;
found: 379.2094.
3. (a) Babler, J. H.; Coghlan, M. J. Synth. Commun. 1976, 469–474; (b) Dauben, W.
G.; Michno, D. M. J. Org. Chem. 1977, 42, 682–685; (c) Sundararaman, P.; Herz,
W. J. Org. Chem. 1977, 42, 813–819.
4. For examples of the oxidative rearrangement with chromium (VI)-reagents on
diversely functionalized tertiary allylic alcohols, see: (a) Brown, P. S.; McElroy,
A. B.; Warren, S. Tetrahedron Lett. 1985, 26, 249–251; (b) Ohler, E.; Zbiral, E.
Synthesis 1991, 357–361; (c) Nangia, A.; Rao, B. Tetrahedron Lett. 1993, 34, 2681–
2684; (d) Luzzio, F. A.; Moore, W. J. J. Org. Chem. 1993, 58, 2966–2971; (e) Surya
Prakash, G. K.; Tongco, E. C.; Mathew, T.; Vankar, Y. D.; Olah, G. A. J. Fluorine
Chem. 2000, 101, 199–202.
5. (a) Mehta, G.; Reddy, A. V. Tetrahedron Lett. 1979, 20, 2625–2628; (b) Nakano, T.;
Martin, A.; Rojas, A. Tetrahedron 1982, 38, 1217–1219; (c) Murai, A.; Abiko, A.;
Masamune, T. Tetrahedron Lett. 1984, 25, 4955–4958; (d) Mori, K.; Kato, M.
Tetrahedron Lett. 1986, 27, 981–982; (e) Alvarez, F. C.; Vander Meer, R. K.;
Lofgren, C. S. Tetrahedron 1987, 4, 2897–2900; (f) Drew, J.; Letellier, M.; Morand,
P.; Szabo, A. G. J. Org. Chem. 1987, 52, 4047–4052; (g) Majetich, G.; Lowery, D.;
Khetani, V.; Song, J.- S.; Hull, K.; Ringold, C. J. Org. Chem. 1991, 56, 3988–4001;
(h) Majetich, G.; Song, J.-S.; Leigh, A. J.; Condon, S. M. J. Org. Chem. 1993, 58,
1030–1037; (i) Abad, A.; Arno, M.; Agullo, C.; Cunat, A. C.; Meseguer, B.; Zar-
agoza, R. J. J. Nat. Prod. 1993, 56, 2133–2141; (j) Trost, B. M.; Pinkerton, A. B. Org.
Lett. 2000, 2, 1601–1603; (k) Nagata, H.; Miyazawa, N.; Ogasawara, K. Chem.
Commun. 2001, 1094–1095; (l) Hanada, K.; Miyazawa, N.; Ogasawara, K. Org.
Lett. 2002, 4, 4515–4517; (m) Mohr, P. J.; Halcomb, R. L. J. Am. Chem. Soc. 2003,
125, 1712–1713; (n) Boyer, F. D.; Hanna, I. Org. Lett. 2007, 9, 2293–2295.
6. (a) Liotta, D.; Brown, D.; Hoekstra, W.; Monahan, R., III. Tetrahedron Lett. 1987,
28, 1069–1072; (b) Majetich, G.; Condon, S.; Hull, K.; Ahmad, S. Tetrahedron Lett.
1989, 30, 1033–1036.
4.3.2.15. 3-Methyl-2-cyclohepten-2-one (15b). Ether–petroleum
ether (1:3), liquid. IR (film): 1652 cmꢁ1. 1H NMR: 1.75–1.8 (m, 4H),
1.95 (s, 3H, Me), 2.42 (t, 2H, J¼5.7 Hz), 2.57 (t, 2H, J¼6.2 Hz), 5.92
(s, 1H). 13C NMR: 21.8, 25.5, 28.0, 34.9, 42.9, 130.2, 159.0, 204.2. Its
physical data were identical with those described in the
literature.32
¨
4.4. Study of the oxidative rearrangement of 1a with other
reoxidants of TEMPO
4.4.1. PhI(OAc)2 as a primary oxidant in the presence of Lewis acids
(Table 6, entry 2). To a solution of 1a (0.154 g, 1 mmol) in CH2Cl2
(3 mL) were added PhI(OAc)2 (0.386 g, 1.2 equiv), TEMPO
(15.6 mg, 10 mol %), Bi(OTf)3 (26 mg, 4 mol %). The reaction
mixture was stirred for 45 min at room temperature and poured
into a column of silica gel. Elution with EtOAc–petroleum ether
(5:95) gave the allylic acetate 1c (62 mg, 32%) as an oil; IR
(film):1725, 1660 cmꢁ1 1H NMR: 0.88 (t, 3H, J¼7 Hz, Me), 1.18–
1.42 (m, 4H), 1.59–1.82 (m, 4H), 1.88–2 (m, 4H), 2.02 (s, 3H, Me),
5.24 (br s, 1H, CHOAc), 5.43 (br s, 1H, CH]C). 13C NMR: 14.0,
19.2, 21.5, 22.4, 28.3, 28.4, 29.6, 37.3, 68.9, 119.3, 144.9, 170.9. Its
NMR data were consistent with the literature data.42 Further
elution with EtOAc–petroleum ether (1:6) furnished the enone
1b (62 mg, 41%), which NMR data were identical with those
described in 4.3.1.
7. (a) Shibuya, M.; Ito, S.; Takahashi, M.; Iwabuchi, Y. Org. Lett. 2004, 6, 4303–
4306; (b) Tello-Aburto, R.; Ochoa-Teran, A.; Olivo, H. F. Tetrahedron Lett. 2006,
47, 5915–5917.
8. (a) Shibuya, M.; Tomizawa, M.; Iwabuchi, Y. J. Org. Chem. 2008, 73, 4750–4752;
(b) Shibuya, M.; Tomizawa, M.; Iwabuchi, Y. Org. Lett. 2008, 73, 4715–4718.
9. Uyanik, M.; Fukatsu, R.; Ishihara, K. Org. Lett. 2009, 11, 3470–3473.
`
`
10. (a) Vatele, J.-M. Tetrahedron Lett. 2006, 47, 715–718; (b) Vatele, J.-M. Synlett
2006, 2055–2058.
11. (a) Vate`le, J.-M. Synlett 2008, 1785–1788; (b) Vate`le, J.-M. Synlett 2009,
2143–2145.
12. For reviews on Bi(OTf)3, see: (a) Suzuki, H.; Ikegami, T.; Matano, Y. Synthesis
1997, 249–267; (b) Leonard, N. M.; Wieland, L. C.; Mohan, R. S. Tetrahedron
2002, 58, 8373–8397; (c) Gaspard-Iloughmane, H.; Le Roux, C. Eur. J. Org. 2004,
2517–2532.
13. For examples of the use of molecular sieves as acid scavenger, see: (a) Vate`le,
J.-M. Tetrahedron 2002, 58, 5689–5698; (b) Urata, H.; Hu, N.-X.; Maekawa,
H.; Fuchikami, T. Tetrahedron Lett. 1991, 32, 4733–4736; (c) Banks, A. R.;
Fibiger, R. F.; Jones, T. J. Org. Chem. 1977, 42, 3965–3966.
14. Lo, H. C.; Han, H.; D’Souza, L. J.; Sinha, S. C.; Keinan, E. J. Am. Chem. Soc. 2007,
128, 1246–1253.
15. For recent exemples of Re2O7- induced 1,3-isomerization of allylic alcohols, see:
(a) Hansen, E. C.; Lee, D. J. Am. Chem. Soc. 2006, 128, 8142–8143; (b) Park, S.; Lee,
D. Synthesis 2007, 2313–2316.
16. For other oxorhenium(VII) derivatives-catalyzed 1,3-allylic rearrangement of
allylic alcohols, see: Bellemin-Laponnaz, S.; Le Ny, J. P. Compt. Rend. Chem. 2002,
5, 217–224.
4.4.2. mCPBA as a primary oxidant (Table 7, entry 2). To a solution
of 1a (0.154 g, 1 mmol) in CH2Cl2 (3 mL) were added TEMPO
(15.6 mg, 10 mol %) and nBu4NBr (32 mg, 10 mol %). The reaction
mixture was cooled to 0 ꢀC and Bi(OTf)3 (65 mg, 10 mol %) and
mCPBA (294 mg, 1.2 equiv) were successively added. After stirring
the reaction mixture for 1 h at 0 ꢀC, a saturated solution of NaHCO3
was added. The aqueous phase was extracted once with CH2Cl2 and
the combined organic extracts were washed once with water, dried
(Na2SO4) and evaporated under reduced pressure. Purification of
the residue on silica gel using EtOAc–petroleum ether (1:5) gave
a mixture of the unsaturated ketone 1b and of the epoxide 1d
(ratio:1/3), which structure was confirmed by NMR spectra.38
Further elution with EtOAc–petroleum ether (1:3) afforded the
rearranged epoxide 1e (47 mg, 28%). 1H NMR: 0.91 (t, 3H, J¼7 Hz,
Me), 1.15–1.9 (m, 12H), 2.26 (br s, 1H, OH), 3.14 (s, 1H, H-2), 3.99
17. During their studies of TEMPO-mediated oxidative rearrangement of tertiary
allylic alcohols, Iwabuchi and co-workers have shown the modulating effect of
water on the reaction rate of the transformation. Water can either accelerate or
slow down the process depending on the reaction conditions (see Ref. 8).