Published on Web 09/28/2009
Highly Enantioselective Organocatalytic Biginelli and
Biginelli-Like Condensations: Reversal of the Stereochemistry
by Tuning the 3,3′-Disubstituents of Phosphoric Acids
Nan Li,†,‡ Xiao-Hua Chen,§ Jin Song,§ Shi-Wei Luo,*,§ Wu Fan,§ and
Liu-Zhu Gong*,†,§
Hefei National Laboratory for Physical Sciences at the Microscale and Department of
Chemistry, UniVersity of Science and Technology of China, Hefei, 230026, China, Chengdu
Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China, and
Graduate School of Chinese Academy of Sciences, Beijing, China
Received July 6, 2009; E-mail: gonglz@ustc.edu.cn; luosw@ustc.edu.cn
Abstract: Organocatalytic enantioselective Biginelli and Biginelli-like reactions by chiral phosphoric acids
derived from 3,3′-disubstituted binaphthols have been investigated. The size of 3,3′-substituents of the
catalysts is able to control the stereochemistry of the Biginelli reaction. By tuning the 3,3′-disubstituents of
the phosphoric acids, the stereochemistry of the Biginelli reaction can be reversed. This organocatalytic
Biginelli reaction by Brønsted acids 12b and 13 is applicable to a wide range of aldehydes and various
ꢀ-keto esters, providing a highly enantioselective method to access DHPMs. 3,3′-Di(triphenylsilyl) binaphthol-
derived phosphoric acid afforded Biginelli-like reactions of a broad scope of aldehydes and enolizable
ketones with benzylthiourea, giving structurally diverse dihydropyrimidinethiones with excellent optical purity.
Theoretical calculations with the ONIOM method on the transition states of the stereogenic center forming
step showed that the imine and enol were simultaneously activated by the bifunctional chiral phosphoric
acid through formation of hydrogen bonds. The effect of the 3,3′-substituents in phosphoric acids on the
stereochemistry of the Biginelli reaction was also theoretically rationalized. The current protocol has been
applied to the synthesis of some pharmaceutically interesting compounds and intermediates, such as chiral
thioureas, dihydropyrimidines, guanidines, and the precursor of (S)-L-771688.
of Eg 5 ATPase than (R)-monastrol.6 (S)-L-771688 (3) is a more
potent and selective R1a receptor antagonist for the treatment
Introduction
Chiral dihydropyrimidinethiones (DHPMs) have found in-
creasing applications to the synthesis of pharmaceutically
relevant substances exhibiting a wide range of important
pharmacological properties,1 including calcium channel modula-
tion,2 R1a-adrenergicreceptor antagonism,3 and mitotic kinesin
inhibition.4 It has been reported that the individual enantiomers
have been found to exhibit different or even opposite pharma-
ceutical activities.1 For example, the (R)-enantiomer of SQ
32926 (1), a calcium channel blocker, exhibits >400-fold more
potent antihypertensive activity in vitro than the other enanti-
omer.5 (S)-Monastrol (2) is 15-fold more potent in the inhibition
of benign prostatic hyperplasia (BPH) than the (R)-enantiomer.7
In addition, chiral thioureas readily available from the reduction
of dihydropyrimidinethiones have been widely employed in
asymmetric catalysis as ligands.8 Moreover, dihydropyrimidi-
nethiones can be converted into either 1,3-diamines or guanidines,
which are core structural elements commonly present in natural
products exemplified by the batzelladine family of polycyclic
(3) (a) Nagarathnam, D.; et al. J. Med. Chem. 1999, 42, 4764. (b) Dhar,
T. G. M.; et al. J. Med. Chem. 1999, 42, 4778. (c) Lagu, D.; et al.
J. Med. Chem. 1999, 42, 4794. (d) Wong, W. C.; et al. J. Med. Chem.
1999, 42, 4804. (e) Lagu, B.; Tian, D.; Chiu, G.; Nagarathnam, D.;
Fang, J.; Shen, Q. R.; Forray, C.; Ransom, R. W.; Chang, R. S. L.;
Vyas, K. P.; Zhang, K. Y.; Gluchowski, C. Bioorg. Med. Chem. Lett.
2000, 10, 175. (f) Barrow, J. C.; Glass, K. L.; Selnick, H. G.;
Freidinger, R. M.; Chang, R. S. L.; O’Malley, S. S.; Woyden, C.
Bioorg. Med. Chem. Lett. 2000, 10, 1917.
† Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences.
‡ Graduate School of Chinese Academy of Sciences.
§ University of Science and Technology of China.
(1) (a) Kappe, C. O. Eur. J. Med. Chem. 2000, 35, 1043. (b) Kappe, C. O.
In Multicomponent Reactions; Zhu, J., Bienayme, H., Eds.; Wiley-
VCH: Weinheim, 2005; p 95.
(4) (a) Mayer, T. U.; Kapoor, T. M.; Haggarty, S. J.; King, R. W.;
Schreiber, S. L.; Mitchison, T. J. Science 1999, 286, 971. (b) Deres,
K.; et al. Science 2003, 299, 893.
(2) (a) Khanina, E. L.; Siliniece, G.; Ozols, J.; Duburs, G.; Kimenis, A.
Khim.-Farm. Zh. 1978, 12, 72. (b) Kastron, V. V.; Vitolin, R. O.;
Khanina, E. L.; Duburs, G.; Kimenis, A. Khim.-Farm. Zh. 1987, 21,
948. (c) Cho, H.; et al. J. Med. Chem. 1989, 32, 2399. (d) Atwal,
K. S.; Rovnyak, G. C.; Kimball, S. D.; Floyd, D. M.; Moreland, S.;
Swanson, B. N.; Gougoutas, J. Z.; Schwartz, J.; Smillie, K. M.; Malley,
M. F. J. Med. Chem. 1990, 33, 2629. (e) Atwal, K. S.; Moreland, S.
Bioorg. Med. Chem. Lett. 1991, 1, 291. (f) Alajarin, R.; Vaquero, J. J.;
Alvarez-Builla, J.; Fau de Casa-Juana, M.; Sunkel, C.; Priego, J. G.;
Gomez-Sal, P.; Torres, R. Bioorg. Med. Chem. 1994, 2, 323. (g)
Schleifer, K.-J. J. Med. Chem. 1999, 42, 2204.
(5) Atwal, K. S.; Swanson, B. N.; Unger, S. E.; Floyd, D. M.; Moreland,
S.; Hedberg, A.; O’Reilly, B. C. J. Med. Chem. 1991, 34, 806.
(6) (a) Maliga, Z.; Kapoor, T. M.; Mitchison, T. J. Chem. Biol. 2002, 9,
989. (b) DeBonis, S.; Simorre, J. P.; Crevel, I.; Lebeau, L.; Skoufias,
D. A.; Blangy, A.; Ebel, C.; Gans, P.; Cross, R.; Hackney, D. D.;
Wade, R. H.; Kozielski, F. Biochemistry 2003, 42, 338.
(7) Barrow, J. C.; et al. J. Med. Chem. 2000, 43, 2703.
(8) For an excellent review, see: Breuzard, J. A. J.; Christ-Tommasino,
M. L.; Lemaire, M. Top. Organomet. Chem. 2005, 15, 231.
9
10.1021/ja905320q CCC: $40.75 2009 American Chemical Society
J. AM. CHEM. SOC. 2009, 131, 15301–15310 15301