The Use of Copper Flow Reactor Technology for the Continuous Synthesis
COMMUNICATIONS
Table 1. Triazole synthesis scale-up.
nology. We acknowledge Professor Valery V. Fokin and Dr.
Jason E. Hein of the Scripps Research Institute for helpful
discussions on click chemistry, Professor D. Tyler McQuade
of Florida State University for valuable comments during the
preparation of the manuscript, Dr. Wei Wang for assistance
1
with H NMR, and Dr. Elizabeth Farrant for discussions on
fluorous spacer technology. We gratefully acknowledge the
Pfizer Student Employment Program for financial support
(to A.R.B.).
Time
Triazole Output
12 min
1 hour
1 day
115 mg[a]
575 mg
13.8 g
[a]
References
Isolated yield.
[1] a) H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew.
Chem. 2001, 113, 2056; Angew. Chem. Int. Ed. 2001, 40,
2004; b) V. V. Rostovtsev, L. G. Green, V. V. Fokin,
K. B. Sharpless, Angew. Chem. 2002, 114, 2708; Angew.
Chem. Int. Ed. 2002, 41, 2596; c) P. Wu, A. K. Feldman,
A. K. Nugent, C. J. Hawker, A. Scheel, B. Voit, J. Pyun,
J. M. J. Frꢅchet, K. B. Sharpless, V. V. Fokin, Angew.
Chem. 2004, 116, 4018; Angew. Chem. Int. Ed. 2004, 43,
3928; d) V. O. Rodionov, V. V. Fokin, M. G. Finn,
Angew. Chem. 2005, 117, 2250; Angew. Chem. Int. Ed.
2005, 44, 2210; e) S. Punna, J. Kuzelka, Q. Wang, M. G.
Finn, Angew. Chem. 2005, 117, 2255; Angew. Chem.
Int. Ed. 2005, 44, 2215; f) F. Himo, T. Lovell, R. Hil-
graf, V. V. Rostovtsev, L. Noodleman, K. B. Sharpless,
V. V. Fokin, J. Am. Chem. Soc. 2005, 127, 210; g) P. Wu,
V. V. Fokin, Aldrichimica Acta 2007, 40, 7.
[2] a) D. R. Buckle, D. J. Outred, C. J. M. Rockell, H.
Smith, B. A. Spicer, J. Med. Chem. 1983, 26, 251;
b) D. R. Buckle, C. J. M. Rockell, H. Smith, B. A.
Spicer, J. Med. Chem. 1986, 29, 2269; c) M. J. Genin,
D. A. Allwine, D. J. Anderson, M. R. Barbachyn, D. E.
Emmert, S. A. Garmon, D. R. Graber, K. C. Grega,
J. B. Hester, D. K. Hutchinson, J. Morris, R. J. Reischer,
C. W. Ford, G. E. Zurenko, J. C. Hamel, R. D. Schaadt,
D. Stapert, B. H. Yagi, J. Med. Chem. 2000, 43, 953;
d) R. Alvarez, S. Velazquez, A. San-Felix, S. Aquaro,
E. De Clercq, C. F. Perno, A. Karlsson, J. Balzarini,
M. J. Camarasa, J. Med. Chem. 1994, 37, 4185; e) H.
Wamhoff, in: Comprehensive Heterocyclic Chemistry,
Vol. 5, (Eds; A. R. Katrizky, C. W. Rees), Pergamon,
Oxford, 1984, p 669.
fraction collector, Agilent 1100 Series pump, and Agilent
1100 Series degasser) interfaced with an Agilent Technolo-
gies 6120 Quadrupole LC/MS. Elemental analysis was car-
ried out by QTI Analytical.
Typical Experimental Procedure for Triazole Library
Synthesis
4-Ethynyltoluene (133.3 mL, 0.25M in DMF, 0.033 mmol, 1.0
equiv.), ethyl iodide (133.3 mL, 0.5M in DMF, 0.066 mmol,
2.0 equiv.), and NaN3 (133.3 mL, 0.5M in DMF/H2O 4:1 v/v,
0.066 mmol, 2.0 equiv.) were aspirated from their respective
source vials, mixed through a PFA mixing tube (0.2 mm
i. d.), loaded into an injection loop and injected into the
flow reactor set at 1508C at a rate of 400 mLminÀ1 (5 min
residence time). Reaction segments were collected in a 96-
well plate containing QuadraPure TU copper-scavenging
resin. Segments were filtered, concentrated, and analyzed
1
using H NMR.
Experimental Procedure for Scaled-Up Triazole
Synthesis
4-Ethynyltoluene (133.3 mL, 1.0M in DMF, 0.1333 mmol, 1.0
equiv.), N-ethylchloroacetamide (133.3 mL, 1.0M in DMF,
0.1333 mmol, 1.0 equiv.), and NaN3 (133.3 mL, 1.0M in
DMF/H2O 4:1 v/v, 0.1333 mmol, 1.0 equiv.) were aspirated
from their respective source vials, mixed through a PFA
mixing tube (0.2 mm i. d.), and loaded into an injection
loop. Six reaction segments were injected into the flow reac-
tor set at 1508C, passed through the reactor at 200 mLminÀ1
(10 min residence time) and collected in a reaction vial con-
taining heptane and water. The yellow precipitate was col-
lected by filtration, washed with water (2ꢃ), heptane (2ꢃ)
and dried under vacuum to afford triazole 5; yield: 115 mg
(60%).
[3] a) V. D. Bock, H. Hiemstra, J. H. van Maarseveen, Eur.
J. Org. Chem. 2006, 51; b) H. C. Kolb, K. B. Sharpless,
Drug Discovery Today, 2004, 8, 1128; c) A. Krasinski,
Z. Radic, R. Manetsch, J. Raushel, P. Taylor, K. B.
Sharpless, H. C. Kolb, J. Am. Chem. Soc. 2005, 127,
6686.
[4] For a review on organic azides, see: S. Brꢆse, C. Gil, K.
Knepper, V. Zimmermanm, Angew. Chem. 2005, 117,
5320; Angew. Chem. Int. Ed. 2005, 44, 5188.
[5] a) P. Appukkuttan, W. Dehaen, V. V. Fokin, E. Van der
Eycken, Org. Lett. 2004, 6, 4223; b) A. K. Feldman, B.
Colasson, V. V. Fokin, Org. Lett. 2004, 6, 3897; c) K.
Kacprzak, Synlett 2005, 6, 943; d) S. Chittaboina, F.
Xie, Q. Wang, Tetrahedron Lett. 2005, 46, 2331.
Supporting Information
Experimental procedures, DOE data, and compound char-
acterization data are available in the Supporting Informa-
tion.
Acknowledgements
[6] a) B. P. Mason, K. E. Price, J. L. Steinbacher, A. R.
Bogdan, D. T. McQuade, Chem. Rev. 2007, 107, 2300;
b) V. Hessel, P. Lob, H. Lowe, Curr. Org. Chem. 2005,
9, 765A; c) V. Hessel, H. Lowe, Chem. Eng. Technol.
We thank Terry Long, Dr. Joel M. Hawkins, Dr. Larry Trues-
dale, and Dr. Kristin E. Price for development of this tech-
Adv. Synth. Catal. 2009, 351, 849 – 854
ꢂ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
853