Organometallics
ARTICLE
was ꢀ17.13%. A total of 32 experiments were collected with the bipolar
gradient strength, initially at 2% (first experiment), linearly increased to
95% (32nd experiment). All gradient pulses were sine shaped, and after
each application a recovery delay of 200 μs was used. The spectra were
processed using an exponential function with a line broadening of 2 Hz.
Further processing was achieved using the Bruker dosy software or
DOSYm software (NMRtec).
F2 refinement, R1(obs) = 0.0396, wR2(all) = 0.1342, 1232 independent
observed absorption-corrected reflections [|Fo| > 4σ(|Fo|), 2θmax
= 145°], 130 parameters. The absolute structure of 3ꢀwas determined
þ
by a combination of R-factor tests [R1 = 0.0396, R1 = 0.0409] and
by use of the Flack parameter [xþ = þ0.03(15), xꢀ = þ0.97(15)].
CCDC 799384.
Synthesis of 1, [Zn5(OAc)6(Et)4]. This is described elsewhere.39
Synthesis of 2, [EtZn(OOCCH3)((C5H5)N)]. Diethylzinc (1.0 M
in toluene, 1.90 mL, 1.90 mmol) was added to a suspension of anhydrous
zinc bis(acetate) (0.35 g, 1.89 mmol) in toluene (3 mL). Pyridine
(0.32 mL, 3.97 mmol) was added, forming a yellow solution. The
mixture was stirred for 2 h, giving a clear, colorless solution with no
particulates. Volatiles were removed in vacuo to yield a sticky, white
solid. The solid was washed with hexane (5 mL) to yield a dry, white
powder (0.32 g, 72%): 1H NMR (C6D6) δ 8.60 (m, 2 H, pyridine ortho),
6.81 (tt, 1 H, J1 = 1.6 Hz, J2 = 7.7 Hz, pyridine para), 6.55 (m, 2 H,
pyridine meta), 2.07 (s, 3 H, ꢀOOCCH3), 1.71 (t, 3 H, J = 8.0 Hz,
ꢀCH2CH3), 0.81 (q, 2 H, J = 8.0 Hz, ꢀCH2CH3) ppm; 13C{1H} NMR
(C6D6) δ 179.7 (ꢀCdO), 149.5 (pyridine ortho), 138.5 (pyridine
para), 124.9 (pyridine meta), 24.3 (ꢀOOCCH3), 14.0 (ꢀCH2CH3),
ꢀ0.8 (ꢀCH2CH3) ppm; IR (Nujol mull) 1605 (sharp, py ν(CdC)),25
1551 (ν(CdO)asymm.), 1438 (ν(CdO)symm), 1259, 1217 (sharp),
1156, 1071, 1040, 1013, 974, 941, 910, 796, 761, 703, 681, 635, 614,
590 cmꢀ1. Anal. Calcd for C9H13O2NZn: C 46.47, H 5.63, N 6.02.
Found: C 46.38, H 5.62, N 5.84.
’ ASSOCIATED CONTENT
S
Supporting Information.
Further experimental and
b
X-ray crystallographic data are available in pdf format and as a
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: m.shaffer@imperial.ac.uk, c.k.williams@imperial.ac.uk.
’ ACKNOWLEDGMENT
This work was funded by the Engineering and Physical
Sciences Research Council (EP/C544846/1 and EP/
C544838/1). We thank Mr. P. Haycock and Mr. R. N. Sheppard
for the PGSE experiments and helpful discussions.
Synthesis of 3, [EtZn(OOCCH3)]. Diethylzinc (0.40 g,
3.24 mmol) was added to a suspension of zinc bis(acetate) (0.593 g,
3.23 mmol) in tetrahydrofuran (5 mL). The mixture was stirred for 4 h
to yield a clear, colorless solution. Volatiles were removed in vacuo to
yield a fine, white powder (0.84 g, 5.47 mmol, 85%): 1H NMR (THF-d8)
δ 1.97 (s, 3 H, ꢀOOCCH3), 1.13 (t, 3 H, J = 8.0 Hz, ꢀCH2CH3), 0.09
(q, 2 H, J = 8.0 Hz, ꢀCH2CH3) ppm; 13C{1H} NMR (THF-d8)
δ 180.2 (ꢀCdO), 23.7 (ꢀOOCCH3), 13.3 (ꢀCH2CH3), 1.7
(ꢀCH2CH3) ppm; IR (Nujol mull) 1584 (br) (ν(CdO)asymm.), 1559
(w), 1421 (ν(CdO)symm), 1362, 1319, 1232, 1177, 1165, 1039, 1022,
995, 957, 928, 900(w), 857(w), 723, 696, 623, 524 cmꢀ1. Anal. Calcd for
C4H7O2Zn: C 31.30, H 5.25. Found: C 31.27, H 5.14.
Copolymerization Reactions. In a typical experiment, a Schlenk
tube was charged with the ethylzinc carboxylate catalyst (0.66 mmol Zn)
and cyclohexene oxide (20 mL, 198 mmol) and stirred for 15 min. The
solution was transferred to an oven-dried Parr reaction vessel under
nitrogen, degassed, and placed under CO2 atmosphere. The reactor was
brought to 80 °C under 3 atm of CO2, before increasing the pressure to
15 bar and stirring for 7.5 h. The resulting polymer mixture was removed
from the reactor using dichloromethane, and the solvent removed under
reduced pressure. The polymeric product was obtained as a clear solid.
The crude material was analyzed by 1H NMR spectroscopy (to
determine the % conversion and the % ether linkages) and by GPC
(to determine the Mn, Mw, and PDI).
’ REFERENCES
(1) Seyferth, D. Organometallics 2001, 20, 2940.
(2) Frankland, E. J. Chem. Soc. 1850, 2, 263.
(3) Knochel, P.; Almena Perea, J. J.; Jones, P. Tetrahedron 1998,
54, 8275.
(4) Boudier, A.; Bromm, L. O.; Lotz, M.; Knochel, P. Angew. Chem.,
Int. Ed. 2000, 39, 4414.
(5) Negishi, E.-i.; Matsushita, H.; Okukado, N. Tetrahedron Lett.
1981, 22, 2715.
(6) Matsushita, H.; Negishi, E. J. Am. Chem. Soc. 1981, 103, 2882.
(7) Son, S.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 2756.
(8) Knochel, P.; Singer, R. D. Chem. Rev. 1993, 93, 2117.
(9) Melzig, L.; Metzger, A.; Knochel, P. J. Org. Chem. 2010, 75, 2131.
(10) Schade, M. A.; Metzger, A.; Hug, S.; Knochel, P. Chem.
Commun. 2008, 3046.
(11) Eberhardt, R.; Allmendinger, M.; Zintl, M.; Troll, C.; Luinstra,
G. A.; Reiger, B. Macromol. Chem. Phys. 2004, 205, 42.
(12) Duchateau, R.; van Meerendonk, W. J.; Huijser, S.; Staal,
B. B. P.; van Schildt, M. A.; Gerritsen, G.; Meetsma, A.; Koning, C. E.;
Kemmere, M. F.; Keurentjes, J. T. F. Organometallics 2007, 26, 4204.
(13) Inoue, S.; Koinuma, H.; Tsuruta, T. J. Polym. Sci. Part C: Polym.
Lett. 1969, 7, 287.
(14) Kobayashi, M.; Inoue, S.; Tsuruta, T. J. Polym. Sci. Polym. Chem.
Ed. 1973, 11, 2383.
(15) Luinstra, G. Polym. Rev. 2008, 48, 192.
(16) Sarazin, Y.; Schormann, M.; Bochmann, M. Organometallics
2004, 23, 3296.
(17) Driess, M.; Merz, K.; Rell, S. Eur. J. Inorg. Chem. 2000, 2517.
(18) Kim, C. G.; Sung, K.; Chung, T.; Jung, D. J.; Kim, Y. Chem.
Commun. 2003, 2068.
(19) Hambrock, J.; Rabe, S.; Merz, K.; Birkner, A.; Wohlfart, A.;
Fischer, R. A.; Driess, M. J. Mater. Chem. 2003, 13, 1731.
(20) Kahn, M.; Monge, M.; Snoeck, E.; Maisonnat, A.; Chaudret, B.
Small 2005, 1, 221.
(21) Kahn, M. L.; Cardinal, T.; Bosquet, B.; Monge, M.; Jubera, V.;
Chaudret, B. ChemPhysChem. 2006, 7, 2392.
X-ray Crystallography. Crystal data for 2: C9H13NO2Zn, M
= 232.57, monoclinic, P21/c (no. 14), a = 7.6301(3) Å, b = 16.0551(6) Å,
c = 9.2431(3) Å, β = 109.296(4)°, V = 1068.69(7) Å3, Z = 4, Dc
= 1.445 g cmꢀ3, μ(Cu KR) = 2.953 mmꢀ1, T = 273 K, colorless blocks,
Oxford Diffraction Xcalibur PX Ultra diffractometer; 2080 independent
measured reflections (Rint = 0.0287), F2 refinement, R1(obs) = 0.0399,
wR2(all) = 0.1251, 1728 independent observed absorption-corrected
reflections [|Fo| > 4σ(|F |), 2θmax = 145°], 119 parameters. CCDC
o
799383.
Crystal data for 3: C8H16O4Zn2, M = 306.95, orthorhombic, Pca21
(no. 29), a = 13.4868(5) Å, b = 9.2244(4) Å, c = 9.2241(3) Å,
V = 1147.55(8) Å3, Z = 4, Dc = 1.777 gcmꢀ3, μ(Cu KR) = 5.063
mmꢀ1, T = 173 K, colorless plates, Oxford Diffraction Xcalibur PX Ultra
diffractometer; 1596 independent measured reflections (Rint = 0.0448),
(22) Kahn, M. L.; Monge, M.; Colliere, V.; Senocq, F.; Maisonnat,
A.; Chaudret, B. Adv. Funct. Mater. 2005, 15, 458.
(23) Monge, M.; Kahn, M. L.; Maisonnat, A.; Chaudret, B. Angew.
Chem., Int. Ed. 2003, 41, 5321.
2228
dx.doi.org/10.1021/om200004a |Organometallics 2011, 30, 2223–2229