6370 Organometallics 2009, 28, 6370–6373
DOI: 10.1021/om900725e
Template Synthesis of Donor-Functionalized NX-Carbenes (X = P, Si)
Insun Yu, Christopher J. Wallis, Brian O. Patrick, and Parisa Mehrkhodavandi*
Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver,
British Columbia, Canada
Received August 18, 2009
Summary: Donor-functionalized (phosphino)(amino)- and
a judicious choice of alkyl substituents, can lead to efficient
catalysis.3b
(silyl)(amino)carbenes are generated via nucleophilic attack
at the carbon atom of a coordinated isocyande on a piano-stool
iron(II) complex. The template synthesis methodology involves
the formation of ylidene complexes, which are reduced to yield
the desired carbene complexes. The electronic properties of the
resulting carbene complexes are similar and indicate that in the
(phosphino)(amino)carbene the phosphine lone pair is not
interacting with the carbene carbon and is available for further
reactivity.
P- or Si-functionalized carbenes remain largely unex-
plored as ligands,2a,d,4 although rare examples were shown
to be excellent ligands for rhodium.5,6 Challenges in the
synthesis of the free carbenes and in the formation of
complexes via ligand substitution pathways have severely
limited the utility of these species as ligands. Donor-functio-
nalized analogues of these carbenes are hitherto unknown.
Herein we report donor-functionalized (phosphino)-
(amino)- and (silyl)(amino)carbenes formed using template
synthesis.7,8 Recently, template synthesis via nucleophilic
attack at the carbon atom of a coordinated isocyanide9,10
has been used to form M-NHC complexes with an H sub-
stituent at the N-position. These complexes were further
utilized to form the first NHC-containing macrocycles,11 but
to our knowledge this strategy has not been used for P- or Si-
substituted carbenes. Our general methodology involves
nucleophilic attack on a chelating isocyanide-triphenylpho-
sphine ligand coordinated to a CpFe(CO) fragment, complex
1, to form ylidene complexes followed by protonation of the
resulting imine to yield the desired carbene complexes
(Scheme 1).12,13
Changing the carbon-bound substituents of stable singlet
carbenes can have a profound effect on their steric and
electronic properties as ligands.1,2 A large collection of N-
heterocyclic carbenes (NHCs) with varied N-bound substit-
uents and their donor-functionalized analogues have been
reported.1 Whereas NHCs use two C-bound donors to
stabilize the carbene (push-push carbenes), early work on
acyclic carbenes2 and recent expansion of the field to stable
cyclic (alkyl)(amino)carbenes (CAACs)3a have demon-
strated that “push-spectator” carbenes (NX-carbenes;
X = C, P, Si) can be stronger donors than NHCs and, with
The reaction of the iron isocyanide complex 112 with 1
equiv of KPPh2 or KSiPh3 in THF at -78 °C affords the
corresponding iron ylidene complexes 2 and 3, respectively.14
*Corresponding author. E-mail: mehr@chem.ubc.ca.
(1) For recent reviews on NHCs and donor-functionalized analogues
ꢀ
see: (a) de Fremonta, P.; Marion, N.; Nolan, S. P. Coord. Chem. Rev.
2009, 253, 862–892. (b) Jacobsen, H.; Correa, A.; Poater, A.; Costabile, C.;
Cavallo, L. Coord. Chem. Rev. 2009, 253, 687–703. (c) Hahn, F. E.; Jahnke,
M. C. Angew. Chem., Int. Ed. 2008, 47, 3122–3172. (d) Herrmann, W. A.
Angew. Chem., Int. Ed. 2002, 41, 1290–1309.
(7) For cyclic C-amino phosphorus ylides as a source of bidentate
phosphine/aminocarbene ligands for transition metals see: Vignolle, J.;
Donnadieu, B.; Bourissou, D.; le Soleilhavoup, M.; Bertrand, G. J. Am.
Chem. Soc. 2006, 128, 14810–14811.
(2) For representative reviews on non-NHCs see: (a) Vignolle, J.;
€
Cattoen, X.; Bourissou, D. Chem. Rev. 2009, 109, 3333-3384.
(b) Arnold, P. L; Pearson, S. Coord. Chem. Rev. 2007, 251, 596–609.
(c) Jones, N. D.; Cavell, R. G. J. Organomet. Chem. 2005, 690, 5485–5496.
(d) Canac, Y.; Soleilhavoup, M.; Conejero, S.; Bertrand, G. J. Organomet.
Chem. 2004, 689, 3857–3865. (e) Bourissou, D.; Guerret, O.; Gabbai, F. P.;
Bertrand, G. Chem. Rev. 2000, 100, 39–91.
(8) For intramolecular stabilization of (amino)(silyl)carbene com-
plexes via interaction of the metal center with the silicon substituent see:
Schwarz, M.; Kickelbick, G.; Schubert, U. Eur. J. Inorg. Chem. 2000,
1811–1817.
(9) (a) Tamm, M.; Hahn, F. E. Coord. Chem. Rev. 1999, 182, 175–209.
(b) Basato, M.; Michelin, R. A.; Mozzon, M.; Sgarbossa, P.; Tassan, A.
J. Organomet. Chem. 2005, 690, 5414–5420.
(3) (a) Lavallo, V.; Canac, Y.; Prasang, C.; Donnadieu, B.; Bertrand,
G. Angew. Chem., Int. Ed. 2005, 44, 5705–5709. (b) Anderson, D. R.;
Lavallo, V.; O'Leary, D. J.; Bertrand, G.; Grubbs, R. H. Angew. Chem., Int.
Ed. 2007, 46, 7262–7265.
(10) (a) Ruiz, J.; Garcıa, G.; Mosquera, M. E. G.; Perandones, B. F.;
´
Gonzalo, M. P.; Vivanco, M. J. Am. Chem. Soc. 2005, 127, 8584–8585.
(b) Ruiz, J.; Perandones, B. F.; García, G.; Mosquera, M. E. G. Organo-
metallics 2007, 26, 5687–5695.
(11) (a) Hahn, F. E.; Langenhahn, V.; Pape, T. Chem. Commun. 2005,
5390–5392. (b) Hahn, F. E.; Langenhahn, V.; L€ugger, T.; Pape, T.; Le Van, D.
Angew. Chem., Int. Ed. 2005, 44, 3759–3763. (c) Kaufhold, O.; Stasch, A.;
Pape, T.; Hepp, A.; Edwards, P. G.; Newman, P. D.; Hahn, F. E. J. Am. Chem.
Soc. 2009, 131, 306–317.
(12) (a) Liu, C.-Y.; Chen, D.-Y.; Cheng, M.-C.; Peng, S.-M.; Liu,
S.-T. Organometallics 1995, 14, 1983–1991. (b) Ku, R.-Z.; Chen, D.-Y.;
Lee, G.-H.; Peng, S.-M.; Liu, S.-T. Angew. Chem., Int. Ed. Engl. 1997, 36,
2631–2632.
(13) Liu et al. reported a diaminocarbene-phosphine complex via the
well-known nucleophilic addition of n-propylamine to a coordinated
isocyanide complex, 1 (ref 12a). We have found analogous reactions with
the less nucleophilic HPPh2 and HSiPh3 to be impossible.
(14) Complex 3 was obtained in 28% isolated yield along with an
unidentified byproduct (10% isolated yield).
ꢀ
(4) (a) Cantat, T.; Mezailles, N.; Maigrot, N.; Richard, L.; Le Floch,
P. Chem. Commun. 2004, 1274–1275. (b) Ruiz, J.; Mosquera, M. E. G.;
García, G.; Patren, E.; Riera, V.; García-Granda, S.; Van der Maelen, F.
Angew. Chem., Int. Ed. 2003, 42, 4767–4771.
(5) (a) Asay, M.; Kato, T.; Saffon-Merceron, N.; Cossıo, F. P.;
´
Baceiredo, A.; Bertrand, G. Angew. Chem., Int. Ed. 2008, 47, 1–5.
(b) Masuda, J. D.; Martin, D.; Lyon-Saunier, C.; Baceiredo, A.; Gornitzka,
H.; Donnadieu, b.; Bertrand, G. Chem. Asian J. 2007, 2, 178–187.
(c) Martin, D.; Baceiredo, A.; Gornitzka, H.; Schoeller, W. W.; Bertrand,
G. Angew. Chem., Int. Ed. 2005, 44, 1700–1703.
(6) (a) Merceron-Saffon, N.; Gornitzka, H.; Baceiredo, A.; Bertrand,
G. J. Organomet. Chem. 2004, 689, 1431–1435. (b) Teuma, E.; Lyon-
Saunier, C.; Gornitzka, H.; Mignani, G.; Baceiredo, A.; Bertrand, G.
J. Organomet. Chem. 2005, 690, 5541–5545. (c) Canac, Y.; Conejero, S.;
Donnadieu, B.; Schoeller, W. W.; Bertrand, G. J. Am. Chem. Soc. 2005, 127,
7312–7313. (d) Merceron, N.; Miqueu, K.; Baceiredo, A.; Bertrand, G.
J. Am. Chem. Soc. 2002, 124, 6806–6807.
r
pubs.acs.org/Organometallics
Published on Web 09/23/2009
2009 American Chemical Society