Full Paper
afforded amino acid (1R,2S)-14 {21 mg, 46 %. [α]D25 = –9 (c = 0.34 in (2S,3R)-10·HCl, (S)-12·HCl, (1S,2R)-14·HCl, (1S,2S,3R,4R)-16·HCl and
H2O), ref.[8a] = –9.1 (c = 0.50 in H2O), ee = 99 %, m.p. 207–212 °C
lactam (1R,2R,5S,6S)-8 are presented in the Supporting Information.
(recrystallized from H2O/acetone), ref.[8a] 206–211 °C} and unreacted
(1S,5R)-3, {22.5 mg, 45 %. [α]D25 = –35.7 (c = 0.40 in CHCl3), ref.[13]
=
Acknowledgments
–32.4 (c = 1.00 in CHCl3), ee = 98 %; ee = 99 %; a pale-yellow oil}
after 48 h. The 1H NMR (400 MHz, CDCl3, 25 °C, TMS) data for
(1S,5R)-3 were similar to those for ( )-3: δ = 1.28–2.11 (m, 6 H, 3 ×
CH2); 3.43–3.49 (dd, 1 H, J = 3.68 Hz; 8.16 Hz, H–1); 4.16–4.21 (t, 1
H, J = 4.12 Hz, H–5); 4.51–4.56 (d, 1 H, J = 11.56 Hz, CH2OH); 4.65–
4.72 (d, 1 H, J = 11.56 Hz, CH2OH) ppm. C7H11NO2 (141.2): calcd. C
59.56, H 7.84, N 9.92; found C 59.59, H 7.82, N 9.89. The 1H NMR
(400 MHz, D2O) data for (1R,2S)-14: δ = 1.74–2.23 (m, 6 H, 3 × CH2);
2.86–2.99 (m, 1 H, H-1); 3.76–3.84 (m, 1 H, H-2). C6H11NO2 (129.2):
calcd. C 55.80, H 8.58, N 10.84; found C 55.78, H 8.60, N 10.84.
The authors acknowledge financial support by the Hungarian
Scientific Research Fund (OTKA) (grant numbers K-108943 and
K115731).
Keywords: Enzyme catalysis · Hydrolysis · Lactams · Amino
acids · Cascade reaction · Enantioselectivity · Traceless
activating group
Preparative-Scale Hydrolysis of Racemic N-Hydroxymethyl-exo-
3-azatricyclo[4.2.1.02.5]non-7-en-4-one [( )-4]: Via the procedure
described above, the reaction of racemic ( )-4 (80 mg, 0.48 mmol),
benzylamine (53 μL, 0.48 mmol.) and H2O (4.4 μL, 0.24 mmol) in
iPr2O (10 mL) in the presence of CAL-B (300 mg, 30 mg mL–1) at
[1] a) F. Fülöp, Chem. Rev. 2001, 101, 2181–2204; b) A. Kuhl, M. G. Hahn, M.
Dumié, J. Mittendorf, Amino Acids 2005, 29, 89–100; c) Liljeblad, L. T.
Kanerva, Tetrahedron 2006, 62, 5831–5854; d) C. S. Stauffer, A. Datta, J.
Org. Chem. 2008, 73, 4166–4174; e) D. Fernandez, E. Torres, F. X. Aviles,
R. M. Ortuno, J. Vendrell, Bioorg. Med. Chem. 2009, 17, 3824–3828; f) T. A.
Martinek, F. Fülöp, Chem. Soc. Rev. 2012, 41, 687–702; g) L. Kiss, F. Fülöp,
Chem. Rev. 2014, 114, 1116–1169.
[2] a) D. G. I. Kingston, D. J. Newman, Curr. Opin. Drug Discov. Devel. 2007,
10, 130–144; b) S. Murray, E. Briasoulis, H. Linardou, D. Bafaloukos, C.
Papadimitriou, Cancer Treat. Rev. 2012, 38, 890–903; c) H. Oettle, Cancer
Treat. Rev. 2014, 40, 1039–1047.
[3] S. Ruf, C. Buning, H. Schreuder, G. Horstick, W. Linz, T. Olpp, J. Perner-
storfer, K. Hiss, K. Kroll, A. Kannt, M. Kohlmann, D. Linz, T. Hübschle, H.
Rütten, K. Wirth, T. Schmidt, T. Sadowski, J. Med. Chem. 2012, 55, 7636–
7649.
[4] a) K. Ziegelbauer, Antimicrob. Agents Chemother. 1998, 42, 1581–1586; b)
N. Griebenov, Medicinal chemistry of alicyclic ꢀ-amino acids, in: Amino
Acids, Peptides and Proteins in Organic Chemistry, vol. 4 (Ed.: A. B. Hughes),
Wiley-VCH, Weinheim, Germany, 2011, p. 175–186.
60 °C afforded amino acid (1R,2R,3S,4S)-16 {36 mg, 49 %. [α]D25
=
–12.4 (c = 0.32 in H2O), ref.[8b] = –12.2 (c = 0.40 in H2O), ee = 98 %;
ee = 99 %, m.p. 262–266 °C (recrystallized from H2O/acetone), ref.[8b]
> 260 °C} and unreacted (1R,2R,5S,6S)-4, [38.6 mg, 48 %. [α]D25
=
+82.1 (c = 0.97 in CHCl3); ee = 99 %; a pale-yellow oil] after 19 h.
The 1H NMR (400 MHz, CDCl3, 25 °C, TMS) and 13C NMR
(100.62 MHz, CDCl3) data for (1R,2R,5S,6S)-4 were similar to those
for ( )-4. C9H11NO2 (165.2): calcd. C 65.44, H 6.71, N 8.48; found C
65.48, H 6.81, N 8.36. The 1H NMR (400 MHz, D2O) data for
(1R,2R,3S,4S)-12: δ = 1.64–1.72 (d, 1 H, J = 9.88 Hz, CHAHB); 1.92–
1.98 (d, 1 H, J = 9.88 Hz, CHAHB); 2.54–2.60 (d, 1 H, J = 7.52 Hz, H-
2); 3.06–3.12 (br. s, 1 H, CH); 3.13–3.18 (br. s, 1 H, CH); 3.34–3.40 (d,
1 H, J = 7.60 Hz, H-3); 6.26–6.50 (m, 2 H, CH=CH). C8H11NO2 (153.2):
calcd. C 62.73, H 7.24, N 9.14; found C 62.75, H 7.22, N 9.15.
Amino Acid Hydrochlorides (2S,3R)-10·HCl, (S)-12·HCl, (1S,2R)-
14·HCl and (1S,2S,3R,4R)-16·HCl: The unreacted hydroxymethyl-
ꢀ-lactam enantiomers were dissolved one by one in 18 % HCl
(15 mL) and refluxed for 3–4 h. The solvents were evaporated off,
and the products, obtained almost quantitatively, were recrystal-
lized from EtOH and Et2O. The amino acid hydrochlorides, obtained
as white crystals, were characterized as follows:
[5] A. Kuhl, M. G. Hahn, M. Dumic, J. Mittendorf, Amino Acids 2005, 29, 89–
100.
[6] S. P. Allwein, R. C. Roemmele Jr., J. J. Haley, D. R. Mowrey, D. E. Petrillo,
J. J. Reif, D. E. Gingrich, R. P. Bakale, Org. Process Res. Dev. 2012, 16, 148–
155.
[7] a) E. Forró, F. Fülöp, Mini-Rev. Org. Chem. 2004, 1, 93–102; b) A. Liljeblad,
L. T. Kanerva, Tetrahedron 2006, 62, 5831–5854; c) L. Kiss, E. Forró, F.
Fülöp, Synthesis of carbocyclic ꢀ-amino acids, in: Amino Acids, Peptides
and Proteins in Organic Chemistry; vol. 1 (Ed.: A. B. Hughes), Wiley-VCH,
Weinheim, Germany, 2009, p. 367–409; d) E. Busto, V. Gotor-Fernandez,
V. Gotor, Chem. Rev. 2011, 111, 3998–4035; e) E. Forró, F. Fülöp, Curr.
Med. Chem. 2012, 19, 6178–6187.
[8] a) E. Forró, F. Fülöp, Org. Lett. 2003, 5, 1209–1212; b) E. Forró, F. Fülöp,
Tetrahedron: Asymmetry 2004, 15, 573–575; c) E. Forró, F. Fülöp, Eur. J.
Org. Chem. 2010, 3074–3079; d) E. Forró, G. Tasnádi, F. Fülöp, J. Mol.
Catal. B 2013, 93, 8–14.
[9] R. Sundell, L. T. Kanerva, Eur. J. Org. Chem. 2015, 1500–1506.
[10] V. Barbier, J. Marrot, F. Couty, O. R. P. David, Eur. J. Org. Chem. 2016, 549–
555.
[11] L. Chu, C. Ohta, Z. Zuo, D. W. C. MacMillan, J. Am. Chem. Soc. 2014, 136,
10886–10889.
[12] J. Li, H. Zhao, X. Jiang, X. Wang, H. Hu, L. Yu, Y. Zhang, Angew. Chem. Int.
Ed. 2015, 54, 6306–6310; Angew. Chem. 2015, 127, 6404.
[13] B. Jouglet, G. Rousseau, Tetrahedron Lett. 1993, 34, 2307–2310.
[14] E. Forró, Z. Galla, Z. Nádasdi, J. Árva, F. Fülöp, J. Mol. Catal. B 2015, 116,
101–105.
[15] For selected references, see: a) H. Nagai, T. Shiozawa, K. Achiwa, Y. Terao,
Chem. Pharm. Bull. 1992, 40, 2227–2229; b) P. Csomós, L. T. Kanerva, G.
Bernáth, F. Fülöp, Tetrahedron: Asymmetry 1996, 7, 1789–1796; c) H.
Hongo, K. Iwasa, C. Kabuto, H. Matsuzaki, H. Nakano, J. Chem. Soc. Perkin
Trans. 1 1997, 1747–1754; d) E. Forró, J. Árva, F. Fülöp, Tetrahedron: Asym-
metry 2001, 12, 643–649; e) Z. C. Gyarmati, A. Liljeblad, G. Argay, A.
Kálmán, G. Bernáth, L. T. Kanerva, Adv. Synth. Catal. 2004, 346, 566–572.
(2S,3R)-10·HCl: [α]D25 = +14 (c = 0.20 in 6
M
HCl), ref.[8c] = +15 (c =
0.25 in 6
M
HCl), ee > 98 %, m.p. 215–220 °C, ref.[14] 215–217 °C;
ee = 95 %.
(S)-12·HCl: [α]D25 = –6.1 (c = 0.60 in H2O), ref.[8d] = –6.4 (c = 0.55 in
H2O), ee = 99 %, m.p. 172–177 °C, ref.[8d] 185–188 °C; ee = 97 %.
(1S,2R)-14·HCl: [α]D25 = +5.1 (c = 0.50 in H2O), ref.[8a] = +5.2 (c =
0.50 in H2O), ee = 99 %, m.p. 166–169 °C, ref.[8a] 166–169 °C; ee =
99 %.
(1S,2S,3R,4R)-16·HCl: [α]D25 = +10.7 (c = 0.40 in H2O), ref.[8b] = +10.6
(c = 0.40 in H2O), ee = 99 %, m.p. 199–206 °C, ref.[8b] 196–210 °C;
ee = 99 %.
Preparation of Enantiomeric exo-3-Azatricyclo[4.2.1.02.5]non-
7-en-4-one [(1R,2R,5S,6S)-8]: The N-hydroxymethyl-ꢀ-lactam
(1R,2R,5S,6S)-4 (20 mg, 0.06 mmol) was dissolved in MeOH (2 mL).
NH4OH (2 mL) was then added and the mixture was stirred at room
temperature for 4 h. The solvent was evaporated and the remaining
residue was chromatographed on silica, and elution with ethyl acet-
ate afforded white crystals of (1R,2R,5S,6S)-8 {15 mg, 92 %. [α]D25
=
+125.5 (c = 0.55 in CHCl3), ref.[8b] = +123.7 (c = 0.50 in CHCl3) ee =
99 %, m.p. 85–87 °C (recrystallized from iPr2O), ref.[8b] 89–91 °C; ee =
99 %}. The 1H NMR and analysis data for amino acid hydrochlorides
Eur. J. Org. Chem. 2016, 2647–2652
2651
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim