M. E. Riveiro et al. / Bioorg. Med. Chem. 17 (2009) 6547–6559
6559
in an early stage of their normal maturation, so differentiation
induction therapy has attracted world-wide attention due to its
higher specificity compared to the traditional approaches.36
In the last years we started working in the development of new
potential and selective anti-leukemic compounds employing natu-
ral and synthetic coumarins as lead molecules. In the present work,
20 related coumarin compounds were made easily accessible via
chemical synthesis. The natural and synthetic 5-substituted ayapin
derivatives BA-1, BA-3, C-1, C-2, D-2, D-5 and the natural 7,8-
methylenedioxycoumarin D-7 were newly synthesized. The lithia-
tion and electrophilic quenching of functionalized imidazolidine
15 and 20 are key-steps in the syntheses of 5-hydroxy-, 5-fluoro-
and 5-bromoayapins BA-1, BA-3 and coumarin D-7, respectively.
5-Hydroxyayapin BA-1 proved to be a suitable precursor for func-
tional group transformations to other 5-oxygenated ayapin deriva-
tives C-1, C-2 and D-2, D-5.
In summary, the present study with natural and synthetic cou-
marins indicates that these compounds can be considered as novel
candidates for leukemia therapy, since they are able to inhibit can-
cer growth and induce differentiation of leukemic cells without
inducing a relevant cytotoxic effect.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Riveiro, M. E.; Shayo, C.; Monczor, F.; Fernandez, N.; Baldi, A.; De Kimpe, N.;
Rossi, J.; Debenedetti, S.; Davio, C. Cancer Lett. 2004, 210, 179.
2. Leszczyniecka, M.; Roberts, T.; Dent, P.; Grant, S.; Fisher, P. B. Pharmacol. Ther.
2001, 90, 105.
The biological evaluation of the compounds revealed that D-2,
D-3, BA-1, D-5, BA-5, and BA-7,24 showed anti-proliferative activ-
ity in U-937 cells (Table 2). Nevertheless, as seen in Figures 1, 3,
and 4, only treatments with 5-(2,3-dihydroxy-3-methylbutoxy)-
6,7-methylenedioxycoumarin (D-3) and 5-(2-hydroxy-3-meth-
oxy-3-methylbutoxy)-6,7-methylenedioxycoumarin (D-2) were
able to induce the differentiation of U-937 cells along the mono-
cytic lineage analyzed by the expression of cell surface markers
as CD88, CD11b, increased oxidative capacity of mature cells fol-
lowing 48 h treatment. On the other hand, other related oxygen-
ated coumarins did not display differentiation activity in the
human leukemia U-937 cell line (Fig. 1). D-2 and D-3 coumarins
show similar activities as previously described for the natural cou-
marins 5-(3-methyl-2-butenyloxy)-6,7-methylenedioxycoumarin
(C-2) and 5-methoxy-6,7-methylenedioxy coumarin (C-1) isolated
from P. polystachyum.1 However, D-2 and D-3 conform a racemic
mixture, hence it is not possible to predict if both enantiomers
are active or just one of them.
3. Tsiftsoglou, A. S.; Pappas, I. S.; Vizirianakis, I. S. Pharmacol. Ther. 2003, 100, 257.
4. O’Kennedy, R.; Thornes, R. D. Coumarins: Biology, Applications and Mode of
Action; Chichester, 1997.
5. Riveiro, M. E.; Moglioni, A.; Vazquez, R.; Gomez, N.; Facorro, G.; Piehl, L.; de
Celis, E. R.; Shayo, C.; Davio, C. Bioorg. Med. Chem. 2008, 16, 2665.
6. Yim, D.; Singh, R. P.; Agarwal, C.; Lee, S.; Chi, H.; Agarwal, R. Cancer Res. 2005,
65, 1035.
7. Riveiro, M. E.; Vazquez, R.; Moglioni, A.; Gomez, N.; Baldi, A.; Davio, C.; Shayo,
C. Biochem. Pharmacol. 2008, 75, 725.
8. Kostova, I.; Raleva, S.; Genova, P.; Argirova, R. Bioinorg. Chem. Appl. 2006, 1.
9. Gage, B. F. Hematology Am. Soc. Hematol. Educ. Program 2006, 467.
10. Ostrov, D. A.; Hernandez Prada, J. A.; Corsino, P. E.; Finton, K. A.; Le, N.; Rowe, T.
C. Antimicrob. Agents Chemother. 2007, 51, 3688.
11. Kontogiorgis, C. A.; Savvoglou, K.; Hadjipavlou-Litina, D. J. J. Enzyme Inhib. Med.
Chem. 2006, 21, 21.
12. Debenedetti, S. L.; Palacios, P. S.; Nadinic, E. L.; Coussio, J. D.; De Kimpe, N.;
Boeykens, M.; Feneau-Dupont, J.; Declercq, J.-P. J. Nat. Prod. 1994, 57, 1539.
13. Maes, D.; Debenedetti, S.; De Kimpe, N. Biochem. System. Ecol. 2006, 34, 165.
14. Maes, D.; Vervisch, S.; Debenedetti, S.; Davio, C.; Mangelinckx, S.; Giubellina,
N.; De Kimpe, N. Tetrahedron 2005, 61, 2505.
15. Bohlmann, F.; Grenz, M.; Zdero, C. Chem. Ber. 1975, 108, 2955.
16. Debenedetti, S. L.; Ferraro, G. E.; Coussio, J. D. Planta Medica 1981, 42, 97.
17. Magalhães, A. F.; Magalhães, E. G.; Leitão Filho, H. F.; Frighetto, R. T. S.; Barros,
S. M. G. Phytochemistry 1981, 20, 1369.
Our results provide insight into the correlation between some
structural properties of polyoxygenated coumarins and their
in vitro leukemic differentiation activity. The most important
features in terms of the structure–activity relationship (SAR)
are the presence of the 6,7-methylendioxy arrangement and
the presence of an alkoxy substituent only at position 5 of the
coumarin nucleus. In this work, only the 5-oxygenated-6,7-
methylenedioxycoumarins D-2 and D-3 showed anti-proliferative
and differentiation activity in U-937 cells. 6,7-Meth-
ylenedioxycoumarins such as ayapin, BA-2, BA-3, and BA-4,
which do not possess an alkoxy substituent on carbon 5, did
not inhibit U-937 proliferation. Remarkably, compound D-6,
which bears methoxy groups at positions 5 and 8, did not dis-
play an anti-proliferative effect on leukemic cells. Furthermore,
5-hydroxy-6,7-methylenedioxycoumarin (BA-1) was able to inhi-
bit cell growth in the tested concentration range, but failed to
induce the expression of CD88 receptor after 48 h of treatment.
The set of results obtained with compounds D-7, D-11, D-12,
D-14, BA-6, BA-10, BA-9, BA-8, and BA-5 supports that the pres-
ence of the methylendioxy group at positions 6 and 7 of the nu-
cleus would be a requirement for the differentiation activity.
These findings support the results obtained with the natural cou-
marins C-1 and C-2 isolated from P. polystachyum.1
18. Debenedetti, S. L.; De Kimpe, N.; Boeykens, M.; Coussio, J. D.; Kesteleyn, B.
Phytochemistry 1997, 45, 1515.
19. Herz, W.; Bhat, S. V.; Santhanam, P. S. Phytochemistry 1970, 9, 891.
20. Burg, M.; Martin, U.; Rheinheimer, C.; Kohl, J.; Bautsch, W.; Bottger, E. C.; Klos,
A. J. Immunol. 1995, 155, 4419.
21. Grynkiewicz, G.; Poenie, M.; Tsien, R. Y. J. Biol. Chem. 1985, 260, 3440.
22. Palacios, R. S.; Rojo, A. A.; Coussio, J. D.; De Kimpe, N.; Debenedetti, S. L. Planta
Medica 1999, 65, 294.
23. Demyttenaere, J.; Vervisch, S.; Debenedetti, S.; Coussio, J.; Maes, D.; De Kimpe,
N. Synthesis 2004, 11, 1844.
24. Maes, D.; Riveiro, M. E.; Shayo, C.; Davio, C.; Debenedetti, S.; De Kimpe, N.
Tetrahedron 2008, 64, 4438.
25. Dolbier, W. R., Jr. J. Fluorine Chem. 2005, 126, 157.
26. (a) Buck, P.; Köbrich, G. Tetrahedron Lett. 1967, 1563; (b) Köbrich, G.; Buck, P.
Chem. Ber. 1970, 103, 1412; (c) Sinhababu, A. K.; Borchardt, R. T. J. Org. Chem.
1983, 48, 1941; (d) Comins, D. L.; Brown, J. D. Tetrahedron Lett. 1981, 22, 4213;
(e) Wiriyachitra, P.; Cava, M. P. J. Org. Chem. 1977, 42, 2274; (f) Katritzky, A. R.;
CavaLong, Q.; He, H.-Y.; Qiua, G.; Wilcox, A. L. P. Arkivoc 2000, VI, 868.
27. Anderson, K. W.; Ikawa, T.; Tundel, R. E.; Buchwald, S. L. J. Am. Chem. Soc. 2006,
128, 10694.
28. Teitel, S.; O’Brien, J.; Brossi, A. J. Org. Chem. 1972, 37, 3368.
29. Bernard, A. M.; Ghiani, M. R.; Piras, P. P.; Rivoldini, A. Synthesis 1989, 287.
30. Castillo, P.; Rodriguez-Ubis, J. C.; Rodriguez, F. Synthesis 1986, 839.
31. Harris, P.; Ralph, P. J. Leukoc. Biol. 1985, 37, 407.
32. Sundstrom, C.; Nilsson, K. Int. J. Cancer 1976, 17, 565.
33. Ansselin, A.; Davey, D.; Allen, D. Neuroscience 1997, 76, 947.
34. Arnaout, M. Blood 1990, 75, 1037.
35. Estey, E. H. Best Pract. Res. Clin. Haematol. 2003, 16, 521.
36. Sell, S. Stem Cell Rev. 2005, 1, 197.