TABLE 2. The 1H NMR Spectra of the Synthesized Compounds
Com-
pound
Chemical, δ, ppm (J, Hz)
1
2
3
5
6
2.43 (3Н, s, CH3*); 4.16 (2Н, d, J = 5.5; CH2N); 4.56 (2Н, s, CH2O);
4.92 (2H, br. s, NH, OH); 6.06 (1H, d, J = 3.2, H Het); 6.11 (1H, d, J = 3.2, H Het);
7.29 (2H, d, J = 7.8, H Ts); 7.73 (2H, d, J = 7.8, H Ts)
2.22 (3Н, d, J = 6.2, CH3); 2.43 (3Н, s, CH3*); 4.30 (1Н, br. s, CHO); 4.55 (2Н, s, CH2N);
4.86 (2H, br. s, NH, OH); 6.32 (1H, d, J = 3.2, H Het); 6.44 (1H, d, J = 3.2, H Het);
7.24 (2H, d, J = 7.8, H Ts); 7.60 (2H, d, J = 7.8, H Ts)
2.42 (3Н, s, CH3*); 2.47 (3Н, s, CH3); 4.26 (1Н, br. s, CHO); 4.53 (2Н, s, CH2N);
4.92 (2H, br. s, NH, OH); 6.22 (1H, d, J = 3.2, H Het); 6.41 (1H, d, J = 3.2, H Het);
7.17 (4Н, m, H Tol); 7.26 (2H, d, J = 7.8, H Ts); 7.63 (2H, d, J = 7.8, H Ts)
2.40 (3Н, s, CH3*); 4.46 (2Н, s, CH2N); 4.92 (1H, br. s, NH); 6.16 (1H, d, J = 3.2, H Het);
6.25 (1H, d, J = 3.2, H Het); 7.26 (2H, d, J = 7.8, H Ts); 7.66 (2H, d, J = 7.8, H Ts);
9.24 (1H, s, CH=O)
2.41 (3Н, s, CH3*); 2.49 (3Н, s, CH3); 4.47 (2Н, s, CH2N); 4.96 (1H, br. s, NH);
6.13 (1H, d, J = 3.2, H Het); 6.29 (1H, d, J = 3.2, H Het); 7.26 (2H, d, J = 7.8, H Ts);
7.63 (2H, d, J = 7.8, H Ts)
7
8
2.40 (3Н, s, CH3*); 2.53 (3Н, s, CH3); 4.51 (2Н, s, CH2N); 4.96 (1H, br. s, NH);
6.12 (1H, d, J = 3.2, H Het); 6.38 (1H, d, J = 3.2, H Het); 7.26−7.57 (8H, m, H Ar)
2.42 (6Н, s, CH3*); 3.71 (2Н, s, CH2); 4.12 (4Н, d, J = 5.7; CH2N); 4.82 (2H, br. s, NH);
5.86 (2H, d, J = 3.2, H Het); 6.23 (2H, d, J = 3.2, H Het); 7.26 (4H, d, J = 7.8, H Ts);
7.71 (4H, d, J = 7.8, H Ts)
9
2.07 (3Н, s, CH3); 2.43 (3Н, s, CH3*); 4.18 (2Н, d, J = 6.0, CH2N); 4.79 (1H, br. s, NH);
4.90 (2H, s, CH2O); 6.08 (1H, d, J = 3.2, H Het); 6.23 (1H, d, J = 3.2, H Het);
7.28 (2H, d, J = 7.8, H Ts); 7.73 (2H, d, J = 7.8, H Ts)
11
12
2.43 (6Н, s, CH3, CH3*); 6.29 (1H, d, J = 3.2, H Het); 7.24 (1H, d, J = 3.2, H Het);
7.32 (2H, d, J = 8.0, H Ts); 7.87 (2H, d, J = 8.0, H Ts); 8.71 (1H, s, CH=N)
2.18 (3Н, t, J = 7.6, CH3); 2.43 (3Н, s, CH3*); 2.51 (2Н, q, J = 7.6, СН3CH2);
6.39 (1H, d, J = 3.2, H Het); 6.95 (1H, d, J = 3.2, H Het); 7.33 (2H, d, J = 8.0, H Ts);
7.67 (2H, d, J = 8.0, H Ts); 8.79 (1H, s, CH=N)
15
2.20 (3Н, s, CH3); 2.42 (3Н, s, CH3*); 3.60 (2Н, s, CH2); 6.49 (1H, d, J = 3.2, H Het);
6.90 (1H, d, J = 3.2, H Het); 7.08 (2H, d, J = 8.1, H Tol); 7.21 (2H, d, J = 8.1, H Tol);
7.33 (2H, d, J = 8.0, H Ts); 7.67 (2H, d, J = 8.0, H Ts); 8.93 (1H, s, CH=N)
_______
*CH3 in Ts.
A similar mechanism was considered earlier to explain the formation of methylfurfural during the
treatment of 2,5-dihydroxymethylfuran with an alcohol solution of HCl under the conditions of the Marckwald
reaction [25].
Two products, i.e., the imine 12 and acetylsilvan 13, were obtained with yields of 39 and 46%
respectively as a result of treatment of the alcohol 2 with H3PO4 in acetic acid.
It is clear that the mechanisms of formation of compounds 12 and 13 are similar to those examined
above for compounds 10 and 11.
H3PO4
Me
Me
2
Me
+
O
O
AcOH
N–Ts
O
12
13
The presence of trace quantities of a product with a difurylmethane structure in the reaction mixture was
also detected by TLC (a characteristic color with bromine vapor), but it was not possible to isolate it by column
chromatography.
527