pubs.acs.org/joc
state A, which is favored over spiro B due to the steric effect
Asymmetric Epoxidation of Fluoroolefins by Chiral
Dioxirane. Fluorine Effect on Enantioselectivity
and favored over planar C due to the stabilizing secondary
orbital interaction between the oxygen nonbonding orbital of
the dioxirane and the π* orbital of the olefin in the spiro
transition state (Figure 2).2,3,5 The stereodifferentiation for the
epoxidation with ketones 3 likely results from electronic inter-
actions.4 It appears that there exists an attraction between the
π substituent of the olefin and the oxazolidinone moiety of the
catalyst (spiro D is favored over spiro E) (Figure 3).4
O. Andrea Wong and Yian Shi*
Department of Chemistry, Colorado State University, Fort
Collins, Colorado 80523
Received July 17, 2009
FIGURE 1. Ketones 1-3.
The asymmetric epoxidation of various fluoroolefins has
been studied using chiral ketone catalyst, and up to 93%
ee was achieved with fructose-derived ketone 1.
FIGURE 2. Proposed transition states for the epoxidation with
ketones 1 and 2.
Chiral ketones represent an important class of organic
catalysts for asymmetric epoxidation.1 Our previous studies
have shown that ketones 1 and 2 are highly effective for the
epoxidation of trans- and trisubstituted olefins,2,3 and keto-
nes 3 are highly effective for the epoxidation of cis- and
related olefins (Figure 1).4 The electronic and steric proper-
ties of substituents on an olefin have an important impact on
the enantioselectivity for the epoxidation. The epoxidation
with ketones 1 and 2 proceeds mainly via spiro transition
FIGURE 3. Proposed transition states for the epoxidation with
ketones 3.
(1) For leading reviews, see: (a) Denmark, S. E.; Wu, Z. Synlett 1999, 847.
(b) Frohn, M.; Shi, Y. Synthesis 2000, 1979. (c) Shi, Y. Acc. Chem. Res. 2004,
37, 488. (d) Yang, D. Acc. Chem. Res. 2004, 37, 497. (e) Wong, O. A.; Shi, Y.
Chem. Rev. 2008, 108, 3958.
(2) For leading references on ketone 1, see: (a) Tu, Y.; Wang, Z.-X.; Shi,
Y. J. Am. Chem. Soc. 1996, 118, 9806. (b) Wang, Z.-X.; Tu, Y.; Frohn, M.;
Shi, Y. J. Org. Chem. 1997, 62, 2328. (c) Wang, Z.-X.; Tu, Y.; Frohn, M.;
Zhang, J.-R.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224. (d) Shu, L.; Shi, Y.
Tetrahedron 2001, 57, 5213.
(3) For leading references on ketone 2, see: (a) Wu, X.-Y.; She, X.; Shi, Y.
J. Am. Chem. Soc. 2002, 124, 8792. (b) Wang, B.; Wu, X.-Y.; Wong, O. A.;
Nettles, B.; Zhao, M.-X.; Chen, D.; Shi, Y. J. Org. Chem. 2009, 74, 3986.
(4) For leading references on ketone 3, see: (a) Tian, H.; She, X.; Shu, L.;
Yu, H.; Shi, Y. J. Am. Chem. Soc. 2000, 122, 11551. (b) Tian, H.; She, X.; Xu,
J.; Shi, Y. Org. Lett. 2001, 3, 1929. (c) Tian, H.; She, X.; Yu, H.; Shu, L.; Shi,
Y. J. Org. Chem. 2002, 67, 2435. (d) Shu, L.; Wang, P.; Gan, Y.; Shi, Y. Org.
Lett. 2003, 5, 293. (e) Shu, L.; Shi, Y. Tetrahedron Lett. 2004, 45, 8115. (f)
Goeddel, D.; Shu, L.; Yuan, Y.; Wong, O. A.; Wang, B.; Shi, Y. J. Org.
Chem. 2006, 71, 1715. (g) Wong, O. A.; Shi, Y. J. Org. Chem. 2006, 71, 3973.
(h) Shen, Y.-M.; Wang, B.; Shi, Y. Angew. Chem., Int. Ed. 2006, 45, 1429. (i)
Shen, Y.-M.; Wang, B.; Shi, Y. Tetrahedron Lett. 2006, 47, 5455. (j) Wang,
B.; Shen, Y.-M.; Shi, Y. J. Org. Chem. 2006, 71, 9519. (k) Burke, C. P.; Shi, Y.
Angew. Chem., Int. Ed. 2006, 45, 4475. (l) Burke, C. P.; Shi, Y. J. Org. Chem.
2007, 72, 4093.
Fluorine has unique steric and electronic properties and is
widely used to alter the properties of organic molecules.6,7 It
is foreseeable that fluorinated olefins may display different
steric and electronic properties for the epoxidation with
chiral ketones as compared to their nonfluorinated counter-
parts. We decided to investigate the asymmetric epoxidation
of monofluorinated olefins using ketones 1-3 to explore the
effect of fluorine on reactivity and enantioselectivity. Herein,
we wish to report our studies on this subject.8-12
The syntheses of various fluoroolefins are outlined
in Schemes 1-4. Fluoroolefins 4, 5, 8, 9, and 11 were
(6) Chambers, R. D. Fluorine in Organic Chemistry; Blackwell Publishing:
Boca Raton, 2004.
(7) Smart, B. E. In Organofluorine Chemistry. Principles and Commercial
Applications; Banks, R. E., Smart, B. E., Tatlow, J. C., Ed.; Plenum Press:
New York, 1994; Chapter 3.
(5) For leading references on theoretic studies on transition states for the
ꢀ
dioxirane epoxidation, see: (a) Bach, R. D.; Andres, J. L.; Owensby, A. L.;
(8) For examples of asymmetric epoxidation of fluoroallylic alcohols and
^
nucleophilic epoxide opening, see: (a) Dubuffet, T.; Bidon, C.; Sauvetre, R.;
Normant, J.-F. J. Organomet. Chem. 1990, 393, 173. (b) Gosmini, C.;
Schlegel, H. B.; McDouall, J. J. W. J. Am. Chem. Soc. 1992, 114, 7207. (b)
Houk, K. N.; Liu, J.; DeMello, N. C.; Condroski, K. R. J. Am. Chem. Soc.
1997, 119, 10147. (c) Jenson, C.; Liu, J.; Houk, K. N.; Jorgensen, W. L. J. Am.
Chem. Soc. 1997, 119, 12982. (d) Deubel, D. V. J. Org. Chem. 2001, 66, 3790.
(e) Singleton, D. A.; Wang, Z. J. Am. Chem. Soc. 2005, 127, 6679.
^
Dubuffet, T.; Sauvetre, R.; Normant, J.-F. Tetrahedron: Asymmetry 1991,
2, 223. (c) Gosmini, C.; Sauvetre, R.; Normant, J. F. Bull. Soc. Chim. Fr 1993,
^
130, 236.
DOI: 10.1021/jo901553t
r
Published on Web 10/01/2009
J. Org. Chem. 2009, 74, 8377–8380 8377
2009 American Chemical Society