C O M M U N I C A T I O N S
a
Table 2. Arylation of 3 Catalyzed by Pd/bipy/Ag2CO3
functional organic materials where the structure-property relationships
are often not easily predictable. These studies as well as the mechanistic
investigations of the newly developed catalysts are now the focus of
our ongoing efforts.
Acknowledgment. This work was supported in part by a Grant-
in-Aid for Scientific Research from MEXT and JSPS. S.Y. is a
recipient of a JSPS Predoctoral Fellowship.
entry
Ar2
Ar3
5 (% yield)
1
C6H5 (a)
C6H5 (a)
5aaa (87)
5acf (61)
5acg (70)
5aec (65)
5aef (73)
5agc (70)
2
p-MeC6H4 (c)
p-MeC6H4 (c)
p-AcC6H4 (e)
p-AcC6H4 (e)
p-CF3C6H4 (g)
p-NO2C6H4 (f)
p-CF3C6H4 (g)
p-MeC6H4 (c)
p-NO2C6H4 (f)
p-MeC6H4 (c)
Supporting Information Available: Experimental procedures and
characterization data for all new compounds. This material is available
3b
4b
5
6b
References
a Conditions:
3
(1 equiv), Ar3I (3 equiv), PdCl2 (5 mol %),
(1) Selected recent examples: (a) Mori, A.; Sugie, A. Bull. Chem. Soc. Jpn.
2008, 81, 548. (b) Su, F.-K.; Hong, J.-L.; Lin, L.-L. Synth. Met. 2004,
142, 63. (c) Geramita, K.; McBee, J.; Shen, Y.; Radu, N.; Tilley, T. D.
Chem. Mater. 2006, 18, 3261. (d) Xing, Y.; Xu, X.; Wang, F.; Lu, P. Opt.
Mater. 2006, 29, 407. (e) Dang, Y.; Chen, Y. J. Org. Chem. 2007, 72,
6901. (f) Kojima, T.; Nishida, J.; Tokito, S.; Tada, H.; Yamashita, Y. Chem.
Commun. 2007, 1430.
(2) Recent examples: (a) Lauth, M.; Bergstro¨m, Å.; Shimokawa, T.; Toftga˚rd,
R. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 8455. (b) Fournier dit Chabert,
J.; Marquez, B.; Neville, L.; Joucla, L.; Broussous, S.; Bouhours, P.; David,
E.; Pellet-Rostaing, S.; Marquet, B.; Moreau, N.; Lemaire, M. Bioorg. Med.
Chem. 2007, 15, 4482. (c) Bey, E.; Marchais-Oberwinkler, S.; Werth, R.;
Negri, M.; Al-Soud, Y. A.; Kruchten, P.; Oster, A.; Frotscher, M.; Birk,
B.; Hartmann, R. W. J. Med. Chem. 2008, 51, 6725.
2,2′-bipyridyl (10 mol %), Ag2CO3 (2 equiv), m-xylene, 120 °C. b Using
1 equiv of Ag2CO3.
DMAP produced the corresponding triflates 6 in high yields (>70%).17
The triflates were cross-coupled with arylboronic acids in the presence
of Pd(PPh3)4 catalyst and Ba(OH)2 to finally afford tetraarylthiophenes
7 in good yields with virtually complete isomeric purities (Table 3).18
Table 3. Synthesis of Tetraarylthiophenes 7a
(3) Synthesis of tetraarylthiophenes: (a) Reference 1b. (b) Reference 1d. (c)
Reference 1e. (d) Dang, T. T.; Rasool, N.; Dang, T. T.; Reinke, H.; Langer,
P. Tetrahedron Lett. 2007, 48, 845. (e) Nakano, M.; Tsurugi, H.; Satoh,
T.; Miura, M. Org. Lett. 2008, 10, 1851.
(4) Programmed synthesis of multiply arylated heterocycles: (a) Itami, K.;
Yamazaki, D.; Yoshida, J. J. Am. Chem. Soc. 2004, 126, 15396. (b)
Campeau, L.-C.; Bertrand-Laperle, M.; Leclerc, J.-P.; Villemure, E.;
Gorelsky, S.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 3276. (c) Goikhman,
R.; Jacques, T. L.; Sames, D. J. Am. Chem. Soc. 2009, 131, 3042. (d)
Reference 1a.
(5) Reviews of C-H bond arylation of arenes: (a) Alberico, D.; Scott, M. E.;
Lautens, M. Chem. ReV. 2007, 107, 174. (b) Seregin, I. V.; Gevorgyan, V.
Chem. Soc. ReV. 2007, 36, 1173. Selected recent breakthroughs: (c) Phipps,
R. J.; Gaunt, M. J. Science 2009, 323, 1593. (d) Stuart, D. R.; Fagnou, K.
Science 2007, 316, 1172. (e) Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.;
Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. J. Am. Chem. Soc. 2007, 129,
3510. (f) Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Am. Chem. Soc. 2008,
130, 10848. (g) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem.
Res. 2008, 41, 1013. (h) Berman, A. M.; Lewis, J. C.; Bergman, R. G.;
Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 14926. (i) Ackermann, L.;
Althammer, A.; Fenner, S. Angew. Chem., Int. Ed. 2009, 48, 201. (j)
Liegault, B.; Lapointe, D.; Caron, L.; Vlassova, A.; Fagnou, K. J. Org.
Chem. 2009, 74, 1826. (k) Campeau, L.-C.; Stuart, D. R.; Leclerc, J.-P.;
Bertrand-Laperle, M.; Villemure, E.; Sun, H.-Y.; Lasserre, S.; Guimond,
N.; Lecavallier, M.; Fagnou, K. J. Am. Chem. Soc. 2009, 131, 3291. (l)
Wang, C.; Piel, I.; Glorius, F. J. Am. Chem. Soc. 2009, 131, 4194. (m)
Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 9651.
(6) Reviews of transition-metal-catalyzed C-C bond formation via C-H bond
cleavage: (a) Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013. (b) Kakiuchi,
F.; Chatani, N. AdV. Synth. Catal. 2003, 345, 1077.
a Conditions: (a) 5, BBr3, CH2Cl2, then Tf2O, i-Pr2NEt, DMAP,
CH2Cl2 (see the Supporting Information for details); (b) 6 (1 equiv),
Ar4B(OH)2 (3 equiv), Pd(PPh3)4 (5 mol %), Ba(OH)2 (2 equiv),
1-butanol/H2O (5:4), 65 °C.
(7) (a) Yokooji, A.; Satoh, T.; Miura, M.; Nomura, M. Tetrahedron 2004, 60,
6757. (b) Borghese, A.; Geldhof, G.; Antoine, L. Tetrahedron Lett. 2006,
47, 9249. (c) Mohanakrishnan, A. K.; Amaladass, P.; Clement, J. A.
Tetrahedron Lett. 2007, 48, 539.
(8) Do, H.-Q.; Khan, R. M. K.; Daugulis, O. J. Am. Chem. Soc. 2008, 130,
15185.
(9) Yanagisawa, S.; Sudo, T.; Noyori, R.; Itami, K. J. Am. Chem. Soc. 2006,
128, 11748.
(10) Join, B.; Yamamoto, T.; Itami, K. Angew. Chem., Int. Ed. 2009, 48, 3644.
(11) (a) Reference 3e. Also see: (b) Okazawa, T.; Satoh, T.; Miura, M.; Nomura,
M. J. Am. Chem. Soc. 2002, 124, 5286.
(12) Platform synthesis: Itami, K.; Yoshida, J. Chem.sEur. J. 2006, 12, 3966.
(13) Examples of regiodivergent C-H arylation of heterocycles: (a) Pivsa-Art,
S.; Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Bull. Chem. Soc.
Jpn. 1998, 71, 467. (b) Kondo, Y.; Komine, T.; Sakamoto, T. Org. Lett.
2000, 2, 3111. (c) Glover, B.; Harvey, K. A.; Liu, B.; Sharp, M. J.;
Tymoschenko, M. Org. Lett. 2003, 5, 301.
In summary, we have established a general protocol for the
programmed synthesis of tetraarylthiophenes. The utilization of three
catalysts, RhCl(CO){P[OCH(CF3)2]3}2, PdCl2/P[OCH(CF3)2]3, and
PdCl2/bipy, enables regioselective sequential arylations at the three
C-H bonds of 3-methoxythiophene with iodoarenes. Interesting metal-
and ligand-controlled regiodivergent C-H arylations have been
uncovered during this study. Noteworthy features of the present method
are that (i) all of the aryl groups assembled on the thiophene core
stem from readily available aryl iodides or boronic acids, (ii) the
installation of aryl groups at the desired positions can be achieved,
and (iii) simple alteration of the application order of aryl reagents in
the sequence results in the production of all possible isomers of
tetraarylthiophenes. Although we focused on the synthesis of tet-
raarylthiophenes in this work, our strategy is also applicable to the
regioselective synthesis of di- or triarylated thiophenes by skipping
one or two of the C-H arylation steps prior to the final C-O bond
arylation. The present strategy should find many uses for combinatorial
lead-structure identification and optimization in the development of
(14) Pd/bipy catalyst in C-H arylation: (a) Sugie, A.; Kobayashi, K.; Suzaki,
Y.; Osakada, K.; Mori, A. Chem. Lett. 2006, 35, 1100. (b) Reference 1a.
(15) The C4 selectivity exerted by the PdCl2/P[OCH(CF3)2]3/Ag2CO3 catalytic
system appears to be unprecedented and is the subject of further investiga-
tion. A full study of this newly developed catalyst will be reported in due
course.
(16) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457.
(17) See the Supporting Information for details.
(18) For the use of Ba(OH)2 in Suzuki-Miyaura coupling, see: Watanabe, T.;
Miyaura, N.; Suzuki, A. Synlett 1992, 207.
JA906215B
9
J. AM. CHEM. SOC. VOL. 131, NO. 41, 2009 14623