C O M M U N I C A T I O N S
Scheme 3. Reactivity of Alkyne-Chelated Ru Alkylidenes
ligand. We believe that the observed alkyne-ruthenium chelate
formation will not only provide insight into the mechanism of enyne
metathesis but also guide us in the design of more efficient and
sophisticated tandem processes.
Figure 1. Molecular structure of 6c in the solid state. Selected bond lengths
(Å) and angles (deg): Ru1-C1, 1.851(3); Ru1-C21, 2.049(3); Ru1-C8,
2.370(4); Ru1-C9, 2.402(4); Ru1-Cl1, 2.3378(9); Ru1-Cl2, 2.3128(10);
C1-Ru1-C21, 98.67(19); C1-Ru1-Cl1, 99.07(11); C1-Ru1-Cl2,
98.75(11); C1-Ru1-C9, 102.60(19).
Acknowledgment. We thank UIC and NIH (CA106673) for
financial support of this work.
of the different bond angles. Indeed, under identical reaction
conditions, substrates 5d-g showed markedly dissimilar behaviors.
Substrates 5d and 5e provided metal complexes 6d and 6e
exclusively without forming 7d and 7e, whereas the reaction of 5f
gave a mixture of complex 6f and metathesis product 7f.11 It is
disappointing that the expected seven-membered-ring closure did
not happen in the reaction of 5g, which gave only the prematurely
terminated product 7g, preempting the formation of 6g.
Supporting Information Available: An acknowledgment for the
mass spectrometry facility at UIUC, general procedures, a CIF for 6c,
and characterization data for representative compounds. This material
References
(1) General reviews: (a) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413.
(b) Fu¨rstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012. (c) Schrock, R. R.;
Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42, 4592. (d) Deiters, A.;
Martin, S. F. Chem. ReV. 2004, 104, 2199. For enyne metathesis: (d)
Giessert, A. J.; Diver, S. T. Chem. ReV. 2004, 104, 1317. (e) Mori, M. In
Handbook of Metathesis; Grubbs, R. H., Ed.; Wiley-VCH: Weinheim,
Germany, 2003; Vol. 2, pp 176-204.
Scheme 2. Formation of Alkyne-Chelated Ru Alkylidenes
(2) Tallarico, J. A.; Bonitatebus, P. J., Jr.; Snapper, M. L. J. Am. Chem. Soc.
1997, 119, 7157.
(3) Trnka, T. M.; Day, M. W.; Grubbs, R. H. Organometallics 2001, 20, 3845.
(4) (a) Anderson, D. R.; Hickstein, D. D.; O’Leary, D. J.; Grubbs, R. H. J. Am.
Chem. Soc. 2006, 128, 8386. (b) Anderson, D. R.; O’Leary, D. J.; Grubbs,
R. H. Chem.sEur. J. 2008, 14, 7536. (c) Stewart, I. C.; Benitez, D.;
O’Leary, D. J.; Tkatchouk, E.; Day, M. W.; Goddard, W. A., III.; Grubbs,
R. H. J. Am. Chem. Soc. 2009, 131, 1931.
(5) Mechanistic studies of enyne metathesis: (a) Computational study: Lippstreu,
J. J.; Straub, B. F. J. Am. Chem. Soc. 2005, 127, 7444. (b) Coordination of
alkene vs alkyne: Sohn, J.-H.; Kim, K. H.; Lee, H.-Y.; No, Z. S.; Ihee, H.
J. Am. Chem. Soc. 2008, 130, 16506. (c) Initiation study with an isotopically
labeled substrate: Lloyd-Jones, G. C.; Margue, R. G.; de Vries, J. G. Angew.
Chem., Int. Ed 2005, 44, 7442. (d) Kinetic study: Diver, S. T.; Galan, B. R.;
Giessert, A. J.; Keister, J. B. J. Am. Chem. Soc. 2005, 127, 5762.
(6) Review of metallotropic shifts: (a) Kim, M.; Lee, D. Org. Biomol. Chem.
2007, 5, 3418. Synthetic applications: (b) Cho, E. J.; Lee, D. Org. Lett.
2008, 10, 257. (c) Li, J.; Miller, R. L.; Lee, D. Org. Lett. 2009, 11, 571.
(7) For structural information on alkynyl Ru alkylidenes, see: Yun, S. Y.; Kim,
M.; Lee, D.; Wink, D. J. J. Am. Chem. Soc. 2009, 131, 24.
(8) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953.
(9) (a) Kingsbury, J. S.; Harrity, J. P. A.; Bonitatebus, P. J., Jr.; Hoveyda,
A. H. J. Am. Chem. Soc. 1999, 121, 791. (b) Garber, S. B.; Kingsbury,
J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168.
(10) Selected examples of other metal-alkyne complexes: (a) Creagan, B. T.;
Wink, D. J. J. Am. Chem. Soc. 1990, 112, 8585. (b) Hayashi, K.; Nakatani,
M.; Hayashi, A.; Takano, M.; Okazaki, M.; Toyota, K.; Yoshifuji, M.;
Ozawa, F. Organometallics 2008, 27, 1970. (c) Jackson, A. B.; Khosla,
C.; White, P. S.; Templeton, J. L. Inorg. Chem. 2008, 47, 8776. (d) Wu,
J.; Kroll, P.; Rasika Dias, H. V. Inorg. Chem. 2009, 48, 423. (e) Casey,
C. P.; Boller, T. M.; Samec, J. S. M.; Reinert-Nash, J. R. Organometallics
2009, 28, 123. (f) Niikura, F.; Seino, H.; Mizobe, Y. Organometallics 2009,
28, 1112. (g) Despagnet-Ayoub, E.; Schigand, S.; Vendier, L.; Etienne,
M. Organometallics 2009, 28, 2188.
To examine whether these alkyne-complexed ruthenium species
are viable catalysts for metathesis reactions, 6c and 6f were treated
with ethylene (Scheme 3). As expected, complex 6c containing the
six-membered ring was recovered unchanged,12 but complex 6f
containing the five-membered ring was readily converted to 7f and
methylidene complex 8.13
In conclusion, we have demonstrated that certain structural
elements of Ru alkylidenes can effectively modulate their reactivity
and stability by showing that alkyne-chelated ruthenium complexes
can be isolated by introducing a gem-dimethyl group near the metal
center. For the first time, we have obtained the X-ray crystal
structure of a Ru alkylidene complex containing an alkyne as a
(11) Complex 6f was characterized by 1H NMR monitoring without isolation
(because of its instability) and by its conversion to 7f. The reported yield
is based on an internal standard (1,2,4,5-tetrabromobenzene).
(12) In the reaction of dimethyl-2,2-diallyl malonate with 6c (10 mol % in
CDCl3), both compounds remained unchanged after 3 h at 40 °C.
(13) Ethylene was introduced into the reaction mixture after complete consump-
tion of the starting material 5f. Therefore, PCy3 in complex 8 originated
from the starting Grubbs II complex.
JA907155R
9
J. AM. CHEM. SOC. VOL. 131, NO. 42, 2009 15115