C. Quin et al. / Tetrahedron 65 (2009) 8154–8160
8159
combined, dried over MgSO4, and concentrated to give an orange
oil. Column chromatography, on silica gel, eluting with EtOAc/
hexane (3:7) gave the nitrone 17 as a pale orange solid (157 mg,
34%). dH (CDCl3, 400 MHz): 7.67 (1H, s), 7.25 (1H, d, J¼8.4 Hz), 6.88
(1H, dd, J¼8.4, 1.6 Hz), 6.75 (1H, d, J¼1.6 Hz), 3.87 (3H, s), 2.14–2.07
(2H, m), 1.87–1.79 (2H, m), 1.30–1.11 (4H, m), 1.02–0.91 (2H, m,
CH2), 0.77 (6H, t, J¼7.2 Hz), 0.64–0.58 (2H, m). dC (CDCl3, 100 MHz):
160.09 (C), 144.51 (C), 133.69 (C), 126.98 (C), 120.95 (CH), 113.01
(CH), 108.41 (CH), 84.23 (C), 55.75 (CH3), 37.33 (CH2), 24.90 (CH2),
22.61 (CH2), 13.95 (CH3). IR (KBr, cmꢁ1): 3100–2800, 1588, 1525.
a 10 mM solution). The solution was then immediately transferred
to a quartz flat cell and placed in the EPR spectrometer for analysis.
3.1.16. Reaction between MitoSpin 4 and hydroxyl radicals generated
by UV irradiation. Aqueous hydrogen peroxide (150
mL of a 100 mM
solution) was added to a solution of MitoSpin 4 in DMF (150
mL of
a 30 mM solution) in a quartz cuvette and the solutionwas irradiated
with UV light (254 nm, 12 W lamp) for 20 min before transferring to
a quartz flat cell and placed in the EPR spectrometer for analysis.
ꢀ
LRMS (EIþ), m/z: 275 (Mþ , 18%), 258 (82), 219 (100), 202 (41), 176
3.1.17. Mitochondrial incubations. Rat liver mitochondria were
prepared by homogenization followed by differential centrifuga-
tion in 250 mM sucrose, 5 mM Tris–HCl, 1 mM EGTA, pH 7.4.37
Protein concentration was determined by the biuret assay using
BSA as a standard.38 All incubations were at 30 ꢂC in KCl buffer
(120 mM KCl, 1 mM EGTA, 10 mM HEPES, pH 7.2) supplemented
ꢀ
(96), 160 (32). HRMS: 275.1887. C17H25O2N requires (Mþ ) 275.1885.
3.1.12. 3,3-Dibutyl-2,3-dihydro-1H-isoindol-5-ol 18. BBr3 (54 mL of
a 1 M solution in DCM, 54 mmol) was added dropwise to a solution
of amine 16 (4.00 g, 15.3 mmol) in dry DCM (100 mL) at 0 ꢂC under
argon. The reaction mixture was then allowed to warm to rt for
72 h. After this time the reaction was quenched with ice cold water.
The mixture was basified with 1 M NaOH(aq) and extracted with
DCM (3ꢃ). The combined organics were washed with brine, dried
over MgSO4, and concentrated in vacuo to give phenol 18 as an
amorphous solid (3.52 g, 93%). Mp: 110–111 ꢂC. dH (CD3OD,
400 MHz): 7.21 (1H, d, J¼8.3 Hz), 6.84 (1H, dd, J¼8.3, 2.2 Hz), 6.65
(1H, d, J¼2.2 Hz), 4.46 (2H, s), 2.09–2.02 (2H, m), 1.93–1.85 (2H, m),
1.45–1.32 (6H, m), 1.26–1.16 (2H, m), 0.88 (6H, t, J¼7.1 Hz). dC
(CD3OD, 100 MHz): 159.74 (C), 143.85 (C), 125.14 (C), 125.04 (CH),
117.61 (CH), 110.34 (CH), 76.59 (C), 49.65 (CH2), 37.42 (CH2), 26.53
(CH2), 23.79 (CH2), 14.17 (CH3). IR (KBr, cmꢁ1): 3433, 3310, 2955–
2931, 2858, 1612, 1481, 1465. LRMS (CIþ), m/z: 248 [MþHþ (amine),
100%], 190 (25). HRMS: 248.2010. C16H26NO requires [MþHþ
(amine)] 248.2015.
with 10 mM succinate and 4 mg/mL rotenone. A TPP-selective
electrode was constructed and used as previously described26 to
measure MitoSpin accumulation into rat liver mitochondria.
Acknowledgements
We thank SPARC and the BBSRC for the purchase of the bench-
top EPR spectrometer used. The University of Glasgow for Caroline
Quin0s studentship. The Wellcome Trust for funding Alison Hay.
Gates Cambridge Trust for funding Jan Trnka.
References and notes
1. (a) Wallace, D. C. Science 1999, 283, 1482–1488; (b) Lin, M. T.; Beal, M. F. Nature
2006, 443, 787–795.
2. Finkel, T. Nat. Rev. Mol. Cell Biol. 2005, 6, 971–976.
3. Murphy, M. P. Biochem. J. 2009, 417, 1–13.
4. Rosen, G. M.; Britigan, B. E.; Halpern, H. J.; Pou, S. Free Radicals: Biology and
Detection by Spin Trapping; OUP: Oxford, 1999.
5. Murphy, M. P.; Echtay, K. S.; Blaikie, F. H.; Asin-Cayuela, J.; Cocheme, H. M.;
Green, K.; Buckingham, J. A.; Taylor, E. R.; Hurrell, F.; Hughes, G.; Miwa, S.;
Cooper, C. E.; Svistunenko, D. A.; Smith, R. A.; Brand, M. D. J. Biol. Chem. 2003,
278, 48534–48545.
6. Hardy, M.; Chalier, F.; Ouari, O.; Finet, J. P.; Rockenbauer, A.; Kalyanaraman, B.;
Tordo, P. Chem. Commun. 2007, 1083–1085.
7. Hardy, M.; Rockenbauer, A.; Vasquez-Vivar, J.; Felix, C.; Lopez, M.; Srinivasan, S.;
Avadhani, N.; Tordo, P.; Kalyanaraman, B. Chem. Res. Toxicol. 2007, 20,1053–1060.
8. Xu, Y.; Kalyanaraman, B. Free Radical Res. 2007, 41, 1–7.
9. Ross, M. F.; Kelso, G. F.; Blaikie, F. H.; James, A. M.; Cocheme, H. M.; Filipovska,
A.; Da Ros, T.; Hurd, T. R.; Smith, R. A.; Murphy, M. P. Biochemistry (Mosc) 2005,
70, 222–230.
10. Murphy, M. P.; Smith, R. A. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 629–656.
11. Murphy, M. P.; Smith, R. A. J. Adv. Drug Delivery Rev. 2000, 41, 235–250.
12. Smith, R. A. J.; Porteous, C. M.; Coulter, C. V.; Murphy, M. P. Eur. J. Biochem. 1999,
263, 709–716.
13. Smith, R. A. J.; Porteous, C. M.; Gane, A. M.; Murphy, M. P. Proc. Natl. Acad. Sci.
U.S.A. 2003, 100, 5407–5412.
3.1.13. 3,3-Dibutyl-2-oxy-3H-isoindol-5-ol 19. Sodium tungstate
(1.00 g, 3.0 mmol) and hydrogen peroxide (2.1 mL, 90 mmol) were
added to a stirred solution of amine 18 (1.50 g, 6.1 mmol) in dry
methanol (20 mL) and the resulting mixture was stirred at rt for
72 h. The reaction mixture was then quenched with 20% aqueous
sodium sulfite solution and extracted with DCM (3ꢃ). The com-
bined organic extracts were washed with brine, dried over MgSO4,
and concentrated in vacuo to give an orange foam. The foam was
triturated with EtOAc to give phenol 19 as an off-white solid
(980 mg, 61%). A small portion was recrystallized from hexane/
EtOAc to give prisms. Mp: 193–195 ꢂC. dH (CD3OD, 400 MHz): 8.12
(1H, s), 7.32 (1H, d, J¼8.4 Hz), 6.81 (1H, dd, J¼8.4, 2.0 Hz), 6.74 (1H,
d, J¼2.0 Hz), 2.14–2.01 (2H, m),1.94–1.78 (2H, m),1.23–1.06 (4H, m),
0.95–0.85 (2H, m), 0.80 (6H, t, J¼6.4 Hz), 0.74–0.70 (2H, m, CH2).
dC (CD3OD, 100 MHz): 160.82 (C), 146.81 (C), 139.29 (CH), 125.71 (C),
123.72 (CH), 116.73 (CH), 110.07 (CH), 85.11 (C), 37.69 (CH2), 25.88
(CH2), 23.38 (CH2), 14.14 (CH3). IR (KBr, cmꢁ1): 3439 (OH), 2954–
14. Burns, R. J.; Smith, R. A. J.; Murphy, M. P. Arch. Biochem. Biophys.1995, 322, 60–68.
15. Lin, T. K.; Hughes, G.; Muratovska, A.; Blaikie, F. H.; Brookes, P. S.; Darley-Usmar,
V.; Smith, R. A. J.; Murphy, M. P. J. Biol. Chem. 2002, 277, 17048–17056.
16. Robinson, K. M.; Janes, M. S.; Pehar, M.; Monette, J. S.; Ross, M. F.; Hagen, T. M.;
Murphy, M. P.; Beckman, J. S. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15038–15043.
17. Trnka, J.; Blaikie, F. H.; Smith, R. A. J.; Murphy, M. P. Free Radical Biol. Med. 2008,
44, 1406–1419.
ꢀ
ꢀ
ꢀ
2857, 1587, 1537. LRMS (EIþ), m/z: 261 (Mþ , 10%), 244 (Mþ ꢁ OH,
ꢀ
ꢀ
23), 216 (Mþ ꢁH2O and HCN, 58), 205 (Mþ ꢁC4H8, 69%), 188
(Mþ ꢁ OH and C4H8, 37), 162 (Mþ ꢁC4H8 and ꢀPr, 100), 146 (Mþ ꢁ Bu
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
and BuH, 32). HRMS: 261.1728. C16H23NO2 requires (Mþ ) 261.1729.
18. (a) Marx, L.; Chiarelli, R.; Guiberteau, T.; Rassat, A. J. Chem. Soc., Perkin Trans. 1
2000, 1181–1182; (b) Marx, L.; Rassat, A. Angew. Chem., Int. Ed. 2000, 39, 4494–
4496; (c) Reid, D. A.; Bottle, S. E.; Micallef, A. S. Chem. Commun. 1998, 1907–1908.
19. The oxidation and reduction of this type of radical has been studied: Blinco, J.
P.; Hodgson, J. L.; Morrow, B. J.; Walker, J. R.; Will, G. D.; Coote, M. L.; Bottle, S. E.
J. Org. Chem. 2008, 73, 6763–6771.
20. (a) Cooper, A. Biophysical Chemistry; Royal Society of Chemistry: Cambridge,
2004; Chapter 1; (b) Shearman, G. C.; Ces, O.; Templer, R. H.; Seddon, J. M.
J. Phys. Condens. Matter 2006, 18, S1105–S1124.
21. Fevig, T. L.; Bowmen, S. M.; Janowick, D. A.; Jones, B. K.; Munson, H. R.;
Ohlweiler, D. F.; Thomas, C. E. J. Med. Chem. 1996, 39, 4988–4996.
22. Orito, K.; Horibata, A.; Nakamura, T.; Ushito, H.; Nagasaki, H.; Yaguchi, M.;
Yamashita, S.; Tokuda, M. J. Am. Chem. Soc. 2004, 126, 14342–14343.
23. (a) Parham, W. E.; Bradsher, C. K. Acc. Chem. Res. 1982, 15, 300–305; (b) Clayden, J.
Organolithiums: Selectivity for Synthesis; Pergamon: London, 2002; Chapter 3.
24. (a) Couture, A.; Deniau, E.; Lamblin, M.; Lorion, M.; Grandclaudon, P. Synthesis
2007, 1434–1437; (b) Lamblin, M.; Couture, A.; Deniau, E.; Grandclaudon, P. Org.
3.1.14. EPR spectroscopy. EPR spectra were acquired on a bench-top
EPR machine with a permanent magnet and a magnetic sweep
circuit (center of field¼0.345 T, sweep width 25 mT) operating at
a frequency of 9.8 GHz (X-band). Acquisition parameters: RG
3.99ꢃ103, 2.76 mW, MA 0.5 G. Hyperfine couplings were derived
from simulations and the g value calculated using strong pitch as
the reference.
3.1.15. Reaction between MitoSpin 4 and hydroxy radicals in the
presence of iron ions. Aqueous iron(II) sulfate (100
solution) and aqueous hydrogen peroxide (100 L of a 1 mM solu-
tion) were added to a solution of the MitoSpin 4 in DMF (100 L of
mL of a 1 mM
m
m