Wilsily and Fillion
JOCArticle
SCHEME 1. Formation of Benzylic All-Carbon Quaternary
Center toward the Total Synthesis of Taiwaniaquinol B
symmetry, which avoids difficult substrate preparation/se-
paration of Z/E isomers, (b) general means of preparation by
Knoevenagel condensation with a variety of ketones, and (c)
their crystalline nature, which permits purification by crys-
tallization/trituration.
Following the completion of the first total synthesis of
taiwaniaquinol B (1), we embarked on developing an asym-
metric version of the conjugate addition of organometallic
reagents to 5-(1-arylalkylidene) Meldrum’s acids. The cop-
per-catalyzed conjugate addition of dialkylzinc reagents to
alkylidene Meldrum’s acids was initiated using 5-(1-
phenylethylidene) derivative 4 to probe the reactivity of the
diactivated tetrasubstituted olefin. Treating Meldrum’s acid
4 with Et2Zn in the presence of catalytic amounts of copper-
(II) triflate and phosphoramidite ligand9 5 furnished desired
product 6 in >99% conversion, 95% yield, and 84% en-
antiomeric excess (eq 1).4d,10 This initial result illustrated the
superior electrophilicity of alkylidene Meldrum’s acids11 and
its value in the formation of all-carbon benzylic quaternary
centers via enantioselective conjugate addition.
Grignard and organocopper reagents to 5-(1-alkylalkylidene)
Meldrum’s acids.6 At the outset of this project, asymmetric
versions of either of these approaches were unprecedented.7
Meldrum’s acid derivatives8 are highly useful intermedi-
ates in a variety of chemical transformations, and alkylidene
Meldrum’s acids possess, from a practical viewpoint, a
number of advantageous features: (a) olefin geometrical
(3) Alexakis’ group: (a) Henon, H.; Mauduit, M.; Alexakis, A. Angew.
Chem., In. Ed. 2008, 47, 9122–9124. (b) Hawner, C.; Li, K.; Cirriez, V.;
Alexakis, A. Angew. Chem., Int. Ed. 2008, 47, 8211–8214. (c) Palais, L.;
Mikhel, I. S.; Bournaud, C.; Micouin, L.; Falciola, C. A.; Vuagnoux-
d’Augustin, M.; Rosset, S.; Bernardinelli, G.; Alexakis, A. Angew. Chem.,
Int. Ed. 2007, 46, 7462–7465. (d) Vuagnoux-d’Augustin, M.; Kehrli, S.;
Alexakis, A. Synlett 2007, 2057–2060. (e) Vuagnoux-d’Augustin, M.; Alex-
akis, A. Chem.;Eur. J. 2007, 13, 9647–9662. (f) Martin, D.; Kehrli, S.;
d’Augustin, M.; Clavier, H.; Mauduit, M.; Alexakis, A. J. Am. Chem. Soc.
2006, 128, 8416–8417. (g) Fuchs, N.; d’Augustin, M.; Humam, M.; Alexakis,
A.; Taras, R.; Gladiali, S. Tetrahedron: Asymmetry 2005, 16, 3143–3146.
(h) d’Augustin, M.; Palais, L.; Alexakis, A. Angew. Chem., Int. Ed. 2005, 44,
1376–1378. Hoveyda’s group: (i) May, T. L.; Brown, M. K.; Hoveyda, A. H.
Angew. Chem., Int. Ed. 2008, 47, 7358–7362. (j) Brown, M. K.; Hoveyda, A.
H. J. Am. Chem. Soc. 2008, 130, 12904–12906. (k) Brown, M. K.; May, T. L.;
Baxter, C. A.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2007, 46, 1097–1100.
(l) Lee, K.; Brown, M. K.; Hird, A. W.; Hoveyda, A. H. J. Am. Chem. Soc.
2006, 128, 7182–7184. (m) Hird, A. W.; Hoveyda, A. H. J. Am. Chem. Soc.
2005, 127, 14988–14989. (n) Wu, J.; Mampreian, D. M.; Hoveyda, A. H.
J. Am. Chem. Soc. 2005, 127, 4584–4585. Hayashi’s group: (o) Shintani, R.;
Tsutsumi, Y.; Nagaosa, M.; Nishimura, T.; Hayashi, T. J. Am. Chem. Soc.
2009, 131, 13588–13589. (p) Shintani, R.; Duan, W.-L.; Hayashi, T. J. Am.
Herein, a systematic study outlining the enantioselective
1,4-addition of dialkylzinc reagents to 5-(1-arylalkylidene)
and indenylidene Meldrum’s acids is presented. Variation of
the aryl and alkyl groups present on the alkylidene was
explored thoroughly. The enantioselection was dependent
on the pattern of substitution of the arene, with para-
substituted aryl groups consistently leading to high enantios-
electivities. The nature of the organozinc reagent on the
efficiency and selectivity of the conjugate addition was also
investigated. The solid-state conformation was determined
for a number of alkylidene Meldrum’s acids and correlated
with the observed enantioselectivity in relation to the pattern
of substitution of the arene moiety.
ꢁ
Chem. Soc. 2006, 128, 5628–5629. Carretero’s group: (q) Mauleon, P.;
Carretero, J. C. Chem. Commun. 2005, 4961–4963. Tomioka’s group:
(r) Matsumoto, Y.; Yamada, K.; Tomioka, K. J. Org. Chem. 2008, 73,
4578–4581.
(4) (a) Wilsily, A.; Lou, T.; Fillion, E. Synthesis 2009, 2066–2072.
(b) Wilsily, A.; Fillion, E. Org. Lett. 2008, 10, 2801–2804. (c) Fillion, E.;
Wilsily, A.; Liao, E-T. Tetrahedron: Asymmetry 2006, 17, 2957–2959.
(d) Fillion, E.; Wilsily, A. J. Am. Chem. Soc. 2006, 128, 2774–2775.
(5) Fillion, E.; Fishlock, D. J. Am. Chem. Soc. 2005, 127, 13144–13145.
(6) For a recent example, see: (a) Limanto, J.; Shultz, C. S.; Dorner, B.;
Desmond, R. A.; Devine, P. N.; Krska, S. W. J. Org. Chem. 2008, 73, 1639–
1642. For all reports prior to our total synthesis, see: (b) Vogt, P. F.; Molino,
B. F.; Robichaud, A. J. Synth. Commun. 2001, 31, 679–684. (c) Davis, A. P.;
Egan, T. J.; Orchard, M. G. Tetrahedron 1992, 48, 8725–8738. (d) Fleming, I.;
Moses, R. C.; Tercel, M.; Ziv, J. J. Chem. Soc., Perkin Trans. 1 1991, 617–
626. (e) Huang, X.; Chan, C.; Wu, Q. Synth. React. Inorg. Met.-Org. Chem.
1982, 12, 549–556. (f) Huang, X.; Chan, C.; Wu, Q. Tetrahedron Lett. 1982,
23, 75–76. For Michael addition of nitromethane for the formation of
quaternary carbon, see: (g) Li, J.; Li, Z.; Chen, Q. J. Chem. Res. 2004, 758–
759. For the formation of 1,5-diionic phosphorous betaines, see: (h) Yavari,
I.; Anary-Abbasinejad, M.; Alizadeh, A.; Habibi, A. Phosphorus Sulfur
Silicon 2002, 177, 2523–2527.
Results and Discussion
Influence of the Substrate Structural Elements on the En-
antioselectivity of the Conjugate Addition. The scope of the
enantioselective 1,4-addition was initially examined by
studying the effect of the aromatic ring directly attached to
the electrophilic carbon of the alkylidene (Table 1). The
(9) (a) Feringa, B. L. Acc. Chem. Res. 2000, 33, 346–353. (b) Feringa, B.
L.; Pineschi, M.; Arnold, L. A.; Imbos, R.; de Vries, A. H. M. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 2620–2623. (c) de Vries, A. H. M.; Meetsma, A.;
Feringa, B. L. Angew. Chem., Int. Ed. Engl. 1996, 35, 2374–2376.
(10) The absolute stereochemistry of Meldrum’s acid 6 was assigned by
derivatization to known compounds; see ref 4d.
(7) Asymmetric synthesis of tertiary carbon centers from alkylidene
€
Meldrum’s acids and dialkylzinc reagents: (a) Knopfel, T. F.; Zarotti, P.;
Ichikawa, T.; Carreira, E. M. J. Am. Chem. Soc. 2005, 127, 9682–9683.
€
(b) Watanabe, T.; Knopfel, T. F.; Carreira, E. M. Org. Lett. 2003, 5, 4557–
4558.
(8) For reviews on Meldrum’s acid in synthesis, see: (a) Ivanov, A. S.
Chem. Soc. Rev. 2008, 37, 789–811. (b) Chen, B.-C. Heterocycles 1991, 32,
ꢁ
529–597. (c) Strozhev, M. F.; Lielbriedis, I. E.; Neiland, O. Ya. Khim.
Geterotsikl. Soedin. 1991, 579–599. (d) McNab, H. Chem. Soc. Rev. 1978,
7, 345–358.
(11) An interesting observation was made regarding the overall superior
electrophilicity of alkylidene Meldrum’s acids compared to their structurally
similar alkylidene dimethyl malonates. Under conditions in which alkylidene
Meldrum’s acid 4 is alkylated in >99% conversion, the analogous alkylidene
malonate was inert. For asymmetric 1,4-addition of organozinc or aluminum
reagents to alkylidene malonates for the formation of tertiary stereocentres,
see: (a) Schppan, J.; Minnaard, A. J.; Feringa, B. L. Chem. Commun. 2004,
792–793. (b) Alexakis, A.; Benhaim, C. Tetrahedron: Asymmetry 2001, 12,
1151–1157.
8584 J. Org. Chem. Vol. 74, No. 22, 2009