C. Li et al. / Tetrahedron Letters 50 (2009) 6053–6056
6055
Table 3
possible Friedel–Crafts reaction with benzene was not detected,
and the reaction gave three-component reaction product in similar
yield. All these observations were not in favor of the Prins-type
reaction mechanism (path b).
Gold alkynilide species has been previously synthesized and
characterized in stoichiometric reaction.17 These species have also
been suggested in the reaction mechanism of Au-catalyzed reac-
tions of terminal alkynes.11,14 Based on these reports and our
own observation in this study, we consider that the mechanism
path a, which involves nucleophilic addition of gold alkynilide B,
is most plausible.
In summary, we have developed an AuPPh3Cl/AgOTf-catalyzed
three-component reaction of terminal alkyne, aldehyde, and
amine. The three-component reaction is highly efficient, providing
propargyl ether in good yields.19 The reaction may involve gold
alkynilide intermediates, which add to the activated C@O bond.
The catalytic processes are carried out under mild conditions to
provide propargyl ethers in good yields.
The scope of the three-component reaction17
5 mol% AgOTf
OEt
O
5 mol% AuPPh3Cl
R2
2a~f
R1
+
+ HC(OEt)3
R1
H
DCE, reflux
R2
4a~f
3a~r
Entry
4, R1
2, R2
t (h)
Yielda (%)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
a, C6H5
a, C6H5
1
2
2
4
3
6
2
2
15
3
15
2
2
4
1
12
4
2
3a, 87
3b, 82
3c, 55
3d, 80
3e, 81
3f, 76
3g, 87
3h, 82
3i, 87
3j, 88
3k, 80
3l, 66
3m, 71
3n, 38
3o, 76
3p, 51
3q, 30b
3r, 32c
b, o-CH3C6H4
a, C6H5
c, o-AllylOC6H4
d, m-BrC6H4
e, m-CH3OC6H4
f, m-CF3C6H4
g, p-BrC6H4
h, p-ClC6H4
i, p-C6H5C6H4
j, 1-Naphthyl
k, 2-Naphthyl
a, C6H5
a, C6H5
a, C6H5
a, C6H5
a, C6H5
a, C6H5
a, C6H5
a, C6H5
a, C6H5
a, C6H5
b, p-BrC6H4
c, p-PhC6H4
e, p-NO2C6H4
f, 2-Naphthyl
b, p-BrC6H4
a, C6H5
Acknowledgments
a, C6H5
a, C6H5
a, C6H5
l, C6H11
The project is generously supported by Natural Science Founda-
tion of China (Grant No. 20832002, 20772003, 20821062), the Min-
istry of Education of China, and National Basic Research Program of
China (973 Program, No. 2009CB825300).
m, p-CH3OC6H4
n, trans-C6H5CH@CHC6H4
a, C6H5
a
b
c
Isolated yield.
1,5-Diphenyl-3-(p-methoxyphenyl) pent-1,4-diyne was isolated in 52%.
The product was 1:1 mixture of 3r and trans-1-Methoxy-3,5-diphenyl-1- pen-
Supplementary data
ten-4-yne.
Supplementary data (characterization data, 1H and 13C NMR
spectra for all new compounds, these materials are available free
of charge via the Internet) associated with this article can be found,
AuL
Ph
H
References and notes
2a
A
OEt
1. For selected reviews, see: (a) Brandsma, L. Preparative Acetylene Chemistry, 2nd
ed.; Elsevier: Amsterdam, 1988; (b)Modern Acetylene Chemistry; Stang, P. J.,
Diederich, F., Eds.; VCH: Weinheim, 1995; (c) Frantz, D. E.; Fässler, R.; Tomooka,
C. S.; Carreira, E. M. Acc. Chem. Res. 2000, 33, 373–381; (d) Negishi, E.-i.;
Anastasia, L. Chem. Rev. 2003, 103, 1979–2017; (e)Handbook of C-H
Transformations; Dyker, G., Ed.; Wiley-VCH: Weinheim, 2005; Vol. 1, pp 31–78.
2. (a) Frantz, D. E.; Fässler, R.; Carreira, E. M. J. Am. Chem. Soc. 1999, 121, 11245–
11246; (b) Anand, N. K.; Carreira, E. M. J. Am. Chem. Soc. 2001, 123, 9687–9688.
3. (a) Takita, R.; Fukuta, Y.; Tsuji, R.; Ohshima, T.; Shibasaki, M. Org. Lett. 2005, 7,
1363–1366; (b) Takita, R.; Yakura, K.; Ohshima, T.; Shibasaki, M. J. Am. Chem.
Soc. 2005, 127, 13760–13761; (c) Zhang, Y.; Li, P.; Wang, M.; Wang, L. J. Org.
Chem. 2009, 74, 4364–4367.
Path a
EtOH
AuL
AuL
3a
Ph
B
OEt
OEt
OEt
PhCHO
HCO2Et
AuL
AuL
or H
1a
HC(OEt)3
Ph
H
H
EtO
EtO
D
C
4. (a) Wei, C.; Li, C.-J. Green Chem. 2002, 4, 39–41; (b) Li, C.-J.; Wei, C. Chem.
Commun. 2002, 268–269.
5. Dhondi, P. K.; Chisholm, J. D. Org. Lett. 2006, 8, 67–69.
6. Fischer, C.; Carreira, E. M. Org. Lett. 2001, 3, 4319–4321.
Path b
2a
OEt
7. (a) Koradin, C.; Polborn, K.; Knochel, P. Angew. Chem., Int. Ed. 2002, 41, 2535–
2538; (b) Gommermann, N.; Koradin, C.; Polborn, K.; Knochel, P. Angew. Chem.,
Int. Ed. 2003, 42, 5763–5766; (c) Wei, C.; Li, C.-J. J. Am. Chem. Soc. 2002, 124,
5638–5639; (d) Asano, Y.; Hara, K.; Ito, H.; Sawamura, M. Org. Lett. 2007, 9,
3901–3904; (e) Motoki, R.; Kanai, M.; Shibasaki, M. Org. Lett. 2007, 9, 2997–
3000; (f) Shi, L.; Tu, Y.-Q.; Wang, M.; Zhang, F.-M.; Fan, C.-A. Org. Lett. 2004, 6,
1001–1003; (g) Choudary, B. M.; Sridhar, C.; Kantam, M. L.; Sreedhar, B.
Tetrahedron Lett. 2004, 45, 7319–7321; (h) Wang, M.; Li, P.; Wang, L. Eur. J. Org.
Chem. 2008, 2255–2261; (i) Kantam, M. L.; Yadav, J.; Laha, S.; Jha, S. Synlett
2009, 1791–1794.
- H
H
3a
Ph
E
Ph
Scheme 3. Mechanistic rationale.
8. Li, P.; Zhang, Y.; Wang, L. Chem. Eur. J. 2009, 15, 2045–2049.
9. (a) Yao, X.; Li, C.-J. Org. Lett. 2005, 7, 4395–4398; (b) Dodda, R.; Zhao, C.-G. Org.
Lett. 2007, 9, 165–167; (c) Wei, C.; Li, Z.; Li, C.-J. Org. Lett. 2003, 5, 4473–4475;
(d) Li, P.; Wang, L.; Zhang, Y.; Wang, M. Tetrahedron Lett. 2008, 49, 6650–6654.
10. Li, P.; Wang, L. Chin. J. Chem. 2005, 23, 1076–1080.
11. (a) Wei, C.; Li, C.-J. J. Am. Chem. Soc. 2003, 125, 9584–9585; (b) Lo, V. K.-Y.; Liu,
Y.; Wong, M.-K.; Che, C.-M. Org. Lett. 2006, 8, 1529–1532; (c) Huang, B.; Yao, X.;
Li, C.-J. Adv. Synth. Catal. 2006, 348, 1528–1532; (d) Yao, X.; Li, C.-J. Org. Lett.
2006, 8, 1953–1955; (e) Skouta, R.; Li, C.-J. Angew. Chem., Int. Ed. 2007, 46,
1117–1119; (f) Xiao, F.; Chen, Y.; Liu, Y.; Wang, J. Tetrahedron 2008, 64, 2755–
2761; (g) Zhang, X.; Corma, A. Angew. Chem., Int. Ed. 2008, 47, 4358–4361.
12. For selected recent reviews on Au-catalyzed reactions, see: (a) Dyker, G.
Angew. Chem., Int. Ed. 2000, 39, 4237–4239; (b) Hashmi, A. S. K. Gold Bull.
2004, 37, 51–65; (c) Hashmi, A. S. K. Angew. Chem., Int. Ed. 2005, 44,
ously. In view of the fact that TfOH could also catalyze the reaction,
the second possible mechanism (path b), which involves a Prins-
type reaction,18 is suggested. In this case, the oxocarbenium ion
D is added to the alkyne directly to give vinyl cation E. The Au cat-
alyst may function as Lewis acid to promote the generation of D.
Several experiments were carried out in order to differentiate
the two reaction pathways. First, Prins-type reaction might occur
when phenyl acetylene is replaced by styrene. However, no reac-
tion occurred under the same conditions with styrene. Second, it
was observed that when the reaction was carried out in benzene,