5674
E. Prell, R. Csuk / Bioorg. Med. Chem. Lett. 19 (2009) 5673–5674
and Cn3D free software; docking simulation were run using
a
modified
algorithm. GOLD (Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. J. Mol.
Biol. 1997, 267, 727). Crystal structure data were obtained from the PDB
structures 3D3I and 2JKE: Kurakata, Y.; Uechi, A.; Yoshida, H.; Kamitori, S.;
Sakano, Y.; Nishikawa, A.; Tonozuka, T. J. Biol. Chem. 2008, 381, 116 and Gloster,
T. M.; Turkenburg, J. P.; Potts, J. R.; Henrisat, B.; Davies, G. J. Chem. Biol. 2008, 15,
1058; for comparative 3-D-QSAR studies: Saqib, U.; Siddiqi, M. I. Int. J. Integr.
Biol. 2009, 5(1), 13; a similar in-silico approach—although on HIV-1 integrase
inhibitors—has been described by Savarino: Savarino, A. Retrovirology 2007, 4,
21.
Figure 1. Structure of antidiabetic miglitol (1).
Biological screening of compounds 1 and 8 was performed using
4. Wessel, H. P. J. Carbohydr. Chem. 1988, 7, 263.
5. Bernotas, R. C.; Pezzone, M. A.; Ganem, B. Carbohydr. Res. 1987, 167, 305.
6. Dasgupta, F.; Garegg, P. J. Synthesis 1994, 1121.
a 4-nitrophenolate-based assay10 starting from the corresponding
glucoside and the a-glucosidase from baker’s yeast. Whereas migl-
7. Middleton, W. J. J. Org. Chem. 1975, 40, 574.
itol shows an IC50 of 9.9 mM in this test for compound 811 an IC50
of 2.1 mM was observed—therefore showing an approx. fivefold
stronger inhibition of the enzyme. Evaluation of the enzyme kinet-
ics revealed 8 as a competitive inhibitor of the enzyme. Biological
8. Khare, D. P.; Hindsgaul, O.; Lemieux, R. U. Carbohydr. Res. 1985, 136, 285.
9. Gilham, P. T.; Khorana, H. G. J. Am. Chem. Soc. 1959, 81, 4647.
10. Conchie, J.; Gelman, A. L.; Levvy, G. A. Biochem. J. 1967, 103, 609. measurement
was performed in microtiter plates using
a Spectrafluor Plus instrument
working at k = 415 nm applying concentration of the glucoside 0.5, 0.67, 1.0
screening revealed 8 as a strong competitive inhibitor against a
a
-
and 2.0 mM and 0.22–0.24 U/ml of the enzyme..
11. Selected analytical data for 4: oil,
½
a D
ꢀ
¼ ꢁ5:69 (c 0.44, CHCl3); 1H NMR
glucosidase. Screening of 8 against a panel of human cell lines
showed a low cytotoxicity of 8 therefore making this compound
an interesting candidate for further clinical investigations.
(400 MHz, CDCl3): d = 7.50–7.20 (m, 25H, H-aromat.), 5.54 (s, 1H, CH-
= 11.5, CH020 OBn), 4.65 (d, 1H, JH ,H = 11.5,
00 ,H0
0
0 0
benzylidene), 5.00 (d, 1H, JH
CH0 OBn), 4.50 (dd, 1H, J6 ,5 = 4.3, J6 = 10.5, H-600), 3.74–3.56 (m, 3H, H-2, H-
00
00 ,60
60, 2H-4), 3.36 (dd, 1H, J3,2 = 9.0, J3,4 = 9.0, H-3), 3.19–3.16 (m, 2H, H-200, H-2e0 ),
2.98 (dd, 1H, J1 ,2 = 5.1, J1 = 11.0, H-100), 2.76 (ddd, 1H, JH-1
= 5.9e, JH-1
0 0 , H-
0 0
0 0 ,10
0 0 , H-20
e
Acknowledgments
= 13.9, H-100), 2.62–2.51 (m, 2H, H-10e, H-5), 2.21 (dd, 1H,
00
200
,
H-10
= 5.9, JH-1
2
+
J1 ,2 = 10.7, J1 ,1 = 11.0, H-10) ppm; MS (ESI–MeOH): m/z (%) = 628.1 ([M+H] ,
0
0
00
100), 650.3 ([M+Na]+, 11), 1254.7 ([M2+H]+, 5), 1277.0 ([M2+Na]+, 14); selected
Many thanks are due to Dr. Claudia Korb for enzymatic screen-
ing, Dr. Dieter Ströhl for many NMR spectra, Dr. Ralph Kluge for
ESI-MS measurements and Mr. Stefan Schwarz for screening the
human cell lines.
analytical data for 8:
½
a D
ꢀ
¼ ꢁ65:77 (c 0.06, MeOH); 1H NMR (500 MHz,
0 0
0
CD3OD): d = 4.40 (dddd, 1H, J2,1 = 4.2, J2,3 = 7.1, J2,1 = 9.1, J2,F = 49.5, H-2), 3.94
(dd, 1H, J6 ,5 = 2.7, J6 = 12.1, H-600), 3.90 (dd, 1H, J6 ,5 = 2.5, J6 ,6 = 12.1, H-60),
0 0
0
0
0 0
0 0 ,60
3.74 (ddd, 1H, JH-2
= 4.5, JH-2
0 0
= 7.5, JH-2
= 11.3, H-20e0), 3.71 (ddd,
00 , H-10
0 0, H-10 0
0 0, H-20
1H, JH-2 , H-1 = 3.7, JH-2 , H-1 = 7.6, JH-2 , H-2 = 11.3, H-20e), 3.49–3.44 (m, 2H, H-3,
0
0
0
0
0 0
H-4), 3.40 (ddd, 1H, J1 ,2 = 4.2, J1 = 10.9, J1 ,F = 13.6, H-100), 3.14 (ddd, 1H, JH-
0 0
0 0
0 0 ,10
= 7.6, JH-1
= 7.5, JH-1
= 4.5, JH-1 ,
= 12.6, H-100), 2.78 (ddd, 1H, JH-1 ,
References and notes
0 0
0 0
0
100
,
H-20
,
-H-20 0
,
H-10
H-
e
= 12.6, H-10e0), 2.65 (ddd, 1H, J1 ,2 = 9.1,
20
H-200
H-10 0
0
0
0
= 3.7, JH-1 ,
J1 ,1 = 10.9, J1 ,F = 14.2, H-10), 2.50 (m, 1H, H-5) ppm; 13C NMR (100 MHz,
0
0 0
0
1. Arakawa, M.; Ebato, C.; Mita, T.; Fujitani, Y.; Shimizu, T.; Watada, H.; Kawamori,
R.; Hirose, T. Metab. Clin. Exp. 2008, 57, 1299.
2. Mahuran, D. J.; Tropak, M. B.; Buttner, E. D.; Blanchard, J. E.; Brown, E. D. U.S.
Patent 2009075960 A1, 2009; Chem. Abstr. 2009, 150, 345565.
3. Visualization was performed using the CAChe 4.0 software from Oxford
molecular; structural superimpositions were conducted using the SWISS PDB
1
2
CD3OD): d = 90.4 (d, J2,F = 175.7, C2), 77.3 (d, J3,F = 18.0, C3), 70.6 (d,
3J4,F = 10.4, C4), 67.5 (C5), 59.3 (ethylene-C2), 58.4 (C6), 54.8 (ethylene-C1),
2
54.0 (d, J1,F = 26.6, C1) ppm; 19F NMR (188 MHz, CD3OD): d = ꢁ195.21 (m, 1F,
F) ppm; MS (ESI–MeOH): m/z (%) = 200.5 ([cluster]2+, 6), 210.3 ([M+H]+, 100),
232.3 ([M+Na]+, 16), 250.3 ([M+Na,H2O]+, 28).