ManOAc-4T suggest an all-trans conformation of the qua-
terthiophene backbone and carbohydrates stretched following
the molecular axis (Figure 3b).
drates. The observed small fibers (Figure 3c) have a uniform
height of about 3.4 nm being in accordance with the width
of the molecule, considering that hydrogen bond formation
of the carbohydrate-functionalized termini took place parallel
to the surface (Figure 3d). In the calculated model, the OT
backbones are separated to 0.6 nm leading to less efficient
π-π stacking.
Due to the amphiphilic character of the molecules the
aggregation model should take into account stabilization due
to phase separation. The semiempirical calculated model
presented in Figure 3b considers not only the intermolecular
phase separation, but also the preferred interaction between
the hydrophilic substrate and the polar part of the molecule.
The monolayer formed in this model is additionally stabilized
by π-π interaction of the conjugated backbones and by van
der Waals interactions of the alkyl chains.
Deprotected hybrid 4b adsorbed from methanol on mica
at Td ) 0 (instantaneous coating) in a monolayer structure
covered by small clusters. With an increase in the delay time,
fiber-like structures (Td ) 20 s, Figure 3c) and finally large
clusters (Td ) 60 s) appeared. The monolayer formed at Td
) 0 evidenced instabilities and a height of only 0.7 nm,
suggesting that the molecules were lying on the mica surface.
The lack of a stable and compact monolayer structure as
well as the dependence of the size of the aggregates on Td
implies strong molecule-molecule interactions, as a result
of H-bonding induced by the deprotection of the carbohy-
In conclusion, an efficient and convenient protocol based
on Sonogashira cross-coupling for the construction of novel
R,ω-end-capped R-D-(+)- and R-L-(-)mannose oligothio-
phene hybrids has been developed. Investigation on optical
properties of amphiphilic deprotected hybrids 4b and 5b in
polar solvents revealed self-assembly into chiral superstruc-
tures of the π-conjugated oligomer blocks whose handedness
depend on the stereochemistry of the pending mannosidic
bioblocks. Characterization of the self-assembly behavior of
R-D-(+)mannosidic hybrids 4a and 4b in the solid state on
mica resulted in a highly ordered layer arrangement.
These findings now allow that the developed synthetic
strategy can be exploited to rationally design novel biocom-
patible and self-assembling (semi)conducting materials by
a combination of miscellaneous ethynylated saccharides and
halogenated π-conjugated building blocks. Thus, self-as-
sembly of these materials into chiral superstructures can be
tuned by the choice of saccharidic building blocks with
suitable stereochemistry.
(12) Schillinger, E.; Mena-Osteritz, E.; Hentschel, J.; Bo¨rner, H. G.;
Ba¨uerle, P. AdV. Mater. 2009, 21, 1562–1567.
(13) Matmour, R.; De Cat, I.; George, S. J.; Adriaens, W.; Leclere, P.;
Bomans, P. H. H.; Sommerdijk, N. A. J. M.; Gielen, J. C.; Christianen,
P. C. M.; Heldens, J. T.; van Hest, J. C. M.; Lo¨wik, D. W. P. M.; De
Feyter, S.; Meijer, E. W.; Schenning, A. P. H. J. J. Am. Chem. Soc. 2008,
130, 14576–14583.
Acknowledgment. The authors gratefully acknowledge
helpful discussions with Prof. Dr. V. Austel and financial
support from the German Research Foundation (DFG) in the
frame of Collaborative Research Center SFB 569 and the
Fonds der Chemischen Industrie.
(14) Iwaura, R.; Hoeben, F.; Masuda, M.; Schenning, A.; Meijer, E. W.;
Shimizu, T. Am. Chem. Soc. 2006, 128, 13298–13304.
(15) Kikkeri, R.; Hossain, L. H.; Seeberger, P. H. Chem. Commun. 2008,
2127–2129.
(16) Hoheisel, T. N.; Frauenrath, H. Org. Lett. 2008, 10, 4525–4528.
(17) Babudri, F.; Colangiuli, D.; Di Lorenzo, D. A.; Farinola, G. M.;
Omar, O. H.; Naso, F. Chem. Commun. 2003, 130–131.
Supporting Information Available: Characterization data
for all new compounds and experimental protocols as well
as optical, redox, and NMR data. This material is available
(18) Takasu, A.; Iso, K.; Dohmae, T.; Hirabayashi, T. Biomacromol-
ecules 2006, 7, 411–414.
(19) (a) Kim, I.-B.; Erdogan, B.; Wilson, J. N.; Bunz, U. H. F.
Chem.sEur. J. 2004, 10, 6247–6254. (b) Kim, I.-B.; Wilson, J. N.; Bunz,
U. H. F. Chem. Commun. 2005, 1273–1275. (c) Phillips, R. L.; Kim, I.-B.;
Tolbert, L. M.; Bunz, U. H. F. J. Am. Chem. Soc. 2008, 130, 6952–6954.
(20) Baek, M.-G.; Stevens, R.-C.; Charych, D. H. Bioconjugate Chem.
2000, 11, 777–788.
OL9022694
(21) (a) Roy, R.; Das, S. K.; Hernandez-Mateo, F.; Gonzalez-Santoyo,
F.; Gan, Z. Synthesis 2001, 7, 1049–1052. (b) Roy, R.; Das, S. K.;
Hernandez-Mateo, F.; Gonzalez-Santoyo, F.; Dominique, R.; Trono, M. C.
Pure Appl. Chem. 1999, 71, 565–571. (c) Roy, R.; Das, S. K.; Hernandez-
Mateo, F.; Gonzalez-Santoyo, F.; Dam, T. K.; Brewer, C. F. Chem.sEur.
J. 2000, 6, 1757–1762. (d) Touaibia, M.; Wellens, A.; Shiao, T. C.; Wang,
Q.; Sirois, S.; Bouckaert, J.; Roy, R. ChemMedChem 2007, 2, 1190–1201.
(22) (a) Wardrop, J. D.; Zhang, W.; Joseph, F. Org. Lett. 2002, 4, 489–
492. (b) Fuhrhop, J.-H.; Mathieu, J. Angew. Chem., Int. Ed. 1984, 24, 100–
113.
(23) Bock, K.; Pedersen, C. J. Chem. Soc., Perkin II 1974, 293–297.
(24) Pope, M.; Swenberg, C. E. Electronic Processes in Organic
Crystals; Clarendon Press: Oxford, UK, 1982.
(25) Bauer, E. Z. Kristallogr. 1958, 110, 372–394.
Org. Lett., Vol. 11, No. 22, 2009
5101