RUDYAKOVA et al.
710
(C2,6), 127.41 (C
), 127.74 (C2indole), 128.21 (CP4h),
1H NMR spectrum (DMSO-d6), δ, ppm: 3.18 s (2H,
4a
indole
Ph
128.54 (C5pyrazole), 128.89 (CP3h,5), 135.63 (CP1h), 135.71
(C7inadole), 148.43 (Cp3yrazole). Found, %: C 44.10; H 2.80;
Cl 23.58; N 9.30; S 5.30. C22H17Cl4F3N4O2S. Calculated,
%: C 44.02; H 2.85; Cl 23.62; N 9.33; S 5.34.
CH2), 5.08 s (2H, CH2), 5.11 s (2H, CH2), 6.04 s (1H,
H4pyrazole), 6.92 m, 7.07 m (9H, 4Hindole, C6H5), 7.43 (1H,
H2indole). Found, %: C 58.95; H 4.43; Cl 8.11; N 9.78;
S 14.71. C21H19ClN3O2S. Calculated, %: C 58.87; H 4.47;
Cl 8.17; N 9.81; S 14.94.
N-(1-{1-[(1-Benzyl-5-chloropyrazol-3-yl)methyl]-
indol-3-yl}-2,2,2-trichloroethyl)-4-chlorobenzene-
sulfonamide (VIII) was obtained from 3.22 g (0.01 mol)
of indolomethylpyrazole III and chloral 4-chloro-
phenylsulfonylimine obtained from 2.61 g (0.01 mol) of
N,N-dichloro-4-chlorobenzenesulfonamide and 7 ml of
trichloroethylene as described in [14]. Yield 4.76 g (75%),
mp 197–199°C. IR spectrum, ν, cm–1: 1545, 1590 (C=N,
C=C), 2850, 2915, 2950 (CHalk), 3020, 3050, 3125 (=CH)
REFERENCES
1. Elguero, J., Goya, P., Jagerovic, N., and Silva, M.S., Targets
in Heterocyclic Systems. Chemistry and Properties,
Attanasi, O.A. and Spinelli D., Eds., 2002, vol. 6, p. 53.
2. Pawer, A. and Patil, A.A., Indian J. Chem., 1994, vol. 33,
p. 156.
3. Grapov,A.F., Usp. Khim., 1999, vol. 68, p. 773.
4. Nazarinia, M., Sharifian,A., and Shafiee,A., J. Heterocycl.
Chem., 1995, vol. 32, p. 223.
5. Suzuki, F., Iwazawa, Y., Sato, T., Igai, T., and Oguch, T.,
Japan Patent 0656792, 1994; Chem. Abstr., 1995, vol. 122,
31573f.
6. Butler, D.E. and De Ward, H.A., J. Org. Chem., 1971,
vol. 36, p. 2542.
7. De Wald, H.A., US Patent 3823157, 1974; Ref. Zh. Khim.,
1975, 12O253P.
8. DeWald, H.A., German Patent 2423642, 1974; Chem.Abstr.,
1975, vol. 83, 206345.
9. Chene,A., Peignier, R., Vors, J.-P., Mortier, J., Cantegil, R.,
and Croisat, D., EPPatent 538156, 1991; Chem. Abstr., 1993,
vol. 119, 160271t; Shen, A., Pen’e, R., Vor, Zh.-P., Mort’e,
Zh., Kantegrii, R., and Kruaza, D., RF Patent 2072991,
1997; RF Byull. Izobr., 1997, vol. 4.
10. Levkovskaya, G.G., Bozhenkov, G.V., Malyushenko, R.N.,
and Mirskova,A.N., Zh. Org. Khim., 2001, vol. 37, p. 1876;
Levkovskaya, G.G., Bozhenkov, G.V., Larina, L.V., and
Mirskova, A.N., Zh. Org. Khim., 2002, vol. 38, p. 1554;
Levkovskaya, G.G., Bozhenkov, G.V., and Mirskova,A.N.,
Izbrannye metody sinteza i modifikatsii geterotsiklov
(Selected Methods of Synthesis and Modification of
Heterocycles), Kartsev, V.G., Ed., Moscow: IBS PRESS,
2003, vol. 2, p. 284; Bozhenkov, G.V., Frolov, Yu.L.,
Toryashinova, D.S.-D., Levkovskaya, G.G., and Mirskova,
A.N., Zh. Org. Khim., 2003, vol. 39, p. 863; Bozhenkov, G.V.,
Levkovskaya, G.G., Larina, L.I., Ushakov, P.E., Dolgu-
shin, G.V., and Mirskova, A.N., Zh. Org. Khim., 2004,
vol. 40, p. 1632; Kondrashov, E.V., Rozentsveig, I.B.,
Sarapulova, G.I., Larina, L.I., Levkovskaya, G.G., Savosik,
V.A., Bozhenkov, G.V., and Mirskova,A.N., Zh. Org. Khim.,
2005, vol. 41, p. 749; Bozhenkov, G.V., Levkovskaya, G.G.,
Mirskova, A.N., and Larina, L.I., Khim. Geterotsikl.
Soedin., 2005, p. 1012.
1
3255 (NH). H NMR spectrum (DMSO-d6), δ, ppm:
5.50 d (2H, CH2), 5.62 s (1H, CH–CCl3), 5.66 s (2H,
CH2), 6.50 s (1H, H4pyrazole), 7.17–7.78 m (13H, C6H5,
C6H4, 4Hindole), 7.90 s (1H, H2indole), 9.36 s (1H, NH).
13C NMR spectrum, δ, ppm: 44.07 (CH2), 52.57 (CH2),
65.74 (CH), 103.09 (CCl3), 104.52 (C4pyrazole), 108.88
(Ci3ndole), 110.37 (Ci4ndole), 118.87 (Ci7ndole), 120.24 (Ci5ndole),
122.02 (Ci6ndole), 127.32 (C
128.29, 128.48, 128.56, 129.14, 129.38, 135.04, 136.72,
137.25, 139.24, 148.88 (C3pyrazole). Found, %: C 50.50;
H 3.35; Cl 27.73; N 8.78; S 4.90. C27H21Cl5N4O2S.
Calculated, %: C 50.45; H 3.29; Cl 27.58; N 8.72; S 4.99.
), 127.58, 127.92 (Cp5yrazole),
4a
indole
{1-[(1-Benzyl-5-chloropyrazol-3-yl)methyl]indol-
3-yl}sulfanylacetic acid (IX). To a solution of 3.22 g
(0.01 mol) of indolomethylpyrazole III and 1.52 g
(0.02 mol) of thiourea in 30 ml of ethanol was added
dropwise in an argon flow within 30 min a solution of
2.53 g (0.01 mol) of iodine and 1.66 g (0.01 mol) of
potassium iodide in 20 ml of 50% C2H5OH. The reaction
mixture was heated at 30–40°C for 3 h, then was added
dropwise 0.50 g (0.01 mol) of hydrazine hydrate and
slowly was added a solution of 2.00 g (0.05 mol) of NaOH
in 5 ml of water and 1.42 g (0.015 mol) of monochloro-
acetic acid in 5 ml of water. The reaction mixture was
heated on a boiling water bath for 2 h at pH no less than
9. On completion of the reaction the ethanol was
evaporated, the separated precipitate was dissolved at
heating in water with activated carbon added, the solution
was kept for 30–60 min, then it was filtered, and the
filtrate was acidified with 10% HCl to pH 2–4, then it
was maintained at 5°C at least 12 h till the product
completely settled and crystallized. The precipitate was
filtered off and dried in air. Yield 2.80 g (80%), mp 106–
110°C. IR spectrum, ν, cm–1: 1580, 1610 (C=N, C=C),
1700 (C=O), 2950 (CH2), 3050, 3120 (=CH), 3400 (OH).
11. Bozhenkov, G.V., Levkovskaya, G.G., Mirskova, A.N.,
Dolgushin, G.V., Larina, L.I., and Ushakov, P.E., Zh. Org.
Khim., 2003, vol. 39, p. 1140.
RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 45 No. 5 2009