C O M M U N I C A T I O N S
77, 137–142. (c) Tachikawa, K.; Hasumi, K.; Endo, A. Thrombosis Res.
1997, 87, 571–576.
(2) Kaneko, I.; Kamoshida, K.; Takahashi, S. J. Antibiot. 1989, 42, 236–241.
(3) Seto, H.; Fujioka, T.; Furihata, K.; Kaneko, I.; Takahashi, S. Tetrahedron
Lett. 1989, 30, 4987–4990.
treatment with Boc2O providing 4. Notably, the indole N-acetamide
was unaffected by this treatment, and the intrinsically strained ring
system did not undergo rearrangement to the more stable C7 (vs C6)
biaryl indole linkage. The assigned structure and stereochemistry were
reaffirmed, through a full spectroscopic characterization of 4, not only
with observation of key NOEs16 and the diagnostic chemical shifts of
the Trp R-CH (THF-d8: δ 3.86, app t) and the diastereotopic Trp ꢀ-CH2
(δ 2.82, d and 3.43, app t) as well as their multiplicity11 but also simply
through the indole coupling pattern where C7-H remains a singlet (δ
8.30, s) while C4-H and C5-H appear as coupled doublets in 4.
This set the stage for introduction of the left-hand ring system.
Coupling (EDCI, HOAt, DMF/CH2Cl2 1:3, -5 °C, 6 h, 59%) of 4
with the tripeptide 3, prepared by the sequential couplings and
N-terminus deprotections of (R)-H2N-Hpg-OMe (24)16 with 5 (PyBOP,
80%; 4 N HCl, dioxane) and (R)-FmocHN-3,5-Cl2Hpg-OH16 (17,
DEPBT, NaHCO3, THF, 0 °C, 24 h, 83%, 9:1 dr; Bu4NF,21 THF,
0-23 °C, <1 h),16 provided 25. Macrocyclization22 of 25 to provide
26 as predominantly a single atropisomer of an inconsequential mixture
of atropisomers was accomplished upon treatment with K2CO3 in THF
(0.5 mM, 60 °C, 48-64 h) in the presence of 18-c-6 and 4 Å MS in
conversions as high as 81%, provided rigorous anhydrous conditions
were maintained to prevent competitive methyl ester hydrolysis. Two-
step removal of the activating nitro group (H2, Ra-Ni, MeOH, 0-23
°C, 6 h, 87%; t-BuONO, H3PO2, THF, 0 °C, 3 h, 72%)23 afforded 28.
Boc deprotection (4 N HCl, dioxane, 23 °C, 1-3 h) and coupling of
the amine with 2-(3,5-dichloro-4-hydroxyphenyl)-2-oxoacetic acid
(29,10,16 EDCI, HOAt, DMF/CH2Cl2 1:5, 0 °C, 2 h, 55%) provided
the penultimate precursor 30. Deprotection of 30 to provide 1 was
accomplished with LiOH (THF/H2O, 0 °C, 3 h, 60%) in a reaction
where the indole N-acetyl group was removed faster (<30 min) than
the methyl ester hydrolysis. Finally, and although we did not conduct
the reaction on a preparative scale providing an isolated yield, the clean
acid-catalyzed conversion of 1 to 2 was conducted on a small scale
with both synthetic and authentic 1 and monitored by LCMS. The
two samples behaved in the same manner providing only 2 and was
most conveniently conducted with 50% TFA/H2O at 50 °C progressing
at a rate that is easily monitored (5 h, vs <5-15 min with neat TFA
at 50 °C7).24
(4) Momota, K.; Kaneko, I.; Kimura, S.; Mitamura, K.; Shimada, K. Biochem.
Biophys. Res. Commun. 1991, 179, 243–250.
(5) (a) Matsuzaki, K.; Ikeda, H.; Ogino, T.; Matsumoto, A.; Woodruff, H. B.;
Tanaka, H.; Omura, S. J. Antibiot. 1994, 47, 1173–1174. (b) Tanaka, H.;
Matsuzaki, K.; Nakashima, H.; Ogino, T.; Matsumoto, A.; Ikeda, H.;
Woodruff, H. B.; Omura, S. J. Antibiot. 1997, 50, 58–65. (c) Matsuzaki,
K.; Ogino, T.; Sunazuka, T.; Tanaka, H.; Omura, S. J. Antibiot. 1997, 50,
66–69.
(6) Gouda, H.; Matsuzaki, K.; Tanaka, H.; Hirono, S.; Omura, S.; McCauley,
J. A.; Sprengeler, P. A.; Furst, G. T.; Smith, A. B., III. J. Am. Chem. Soc.
1996, 118, 13087–13088.
(7) (a) Jayasuriya, H.; Salituro, G. M.; Smith, S. K.; Heck, J. V.; Gould, S. J.;
Singh, S. B.; Homnick, C. F.; Holloway, M. K.; Pitzenberger, S. M.; Patane,
M. A. Tetrahedron Lett. 1998, 39, 2247–2248. (b) Hegde, V. R.; Dai, P.;
Patel, M.; Gullo, V. P. Tetrahedron Lett. 1998, 39, 5683–5684.
(8) (a) Singh, S. B.; Jayasuriya, H.; Salituro, G. M.; Zink, D. L.; Shafiee, A.;
Heimbuch, B.; Silverman, K. C.; Lingham, R. B.; Genilloud, O.; Teran,
A.; Vilella, D.; Felock, P.; Hazuda, D. J. Nat. Prod. 2001, 64, 874–882.
(b) Singh, S. B.; Jayasuriya, H.; Hazuda, D. L.; Felock, P.; Homnick, C. F.;
Sardana, M.; Patane, M. A. Tetrahedron Lett. 1998, 39, 8769–8770.
(9) (a) Hegde, V. R.; Puar, M. S.; Dai, P. D.; Patel, M.; Gullo, V. P.; Chan,
T.-M.; Silver, J.; Pramanik, B. N.; Jenh, C.-H. Bioorg. Med. Chem. Lett.
2003, 13, 573–575. (b) Hegde, V. R.; Puar, M. S.; Dai, P.; Patel, M.; Gullo,
V. P.; Pramanik, B. N.; Jenh, C.-H. Tetrahedron Lett. 2002, 43, 5339–
5341.
(10) Deng, H.; Jung, J.-K.; Liu, T.; Kuntz, K. W.; Snapper, M. L.; Hoveyda,
A. H. J. Am. Chem. Soc. 2003, 125, 9032–9034.
(11) Shinohara, T.; Deng, H.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem.
Soc. 2005, 127, 7334–7336.
(12) (a) Jia, Y.; Bois-Choussy, M.; Zhu, J. Angew. Chem., Int. Ed. 2008, 47,
4167–4172. (b) Jia, Y.; Bois-Choussy, M.; Zhu, J. Org. Lett. 2007, 9, 2401–
2404. (c) Yamada, Y.; Akiba, A.; Arima, S.; Okada, C.; Yoshida, K.; Itou,
F.; Kai, T.; Satou, T.; Takeda, K.; Harigaya, Y. Chem. Pharm. Bull. Jpn.
2005, 53, 1277–1290. (d) Smith, A. B., III; Chruma, J. J.; Han, Q.; Barbosa,
J. Bioorg. Med. Chem. Lett. 2004, 14, 1697–1702. (e) Elder, A. M.; Rich,
D. H. Org. Lett. 1999, 1, 1443–1446. (f) Roussi, G.; Zamora, E. G.;
Carbonnelle, A.-C.; Beugelmans, R. Heterocycles 1999, 51, 2041–2063.
(g) Kai, T.; Kajimoto, N.; Konda, Y.; Harigaya, Y.; Takayanagi, H.
Tetrahedron Lett. 1999, 40, 6289–6292. (h) Gurjar, M. K.; Tripathy, N. K.
Tetrahedron Lett. 1997, 38, 2163–2166.
(13) (a) Larock, R. C.; Yum, E. K. J. Am. Chem. Soc. 1991, 113, 6689–6690.
(b) Larock, R. C.; Yum, E. K.; Refvik, M. D. J. Org. Chem. 1998, 63,
7652–7662.
(14) Shen, M.; Li, G.; Lu, B. Z.; Hossain, A.; Roschangar, F.; Farina, V.;
Senanayaka, C. H. Org. Lett. 2004, 6, 4129–4132.
(15) (a) Ma, C.; Liu, X.; Li, X.; Flippen-Anderson, J.; Yu, S.; Cook, J. M. J.
Org. Chem. 2001, 66, 4525–4542. See also: (b) Jeschke, T.; Wensbo, D.;
Annby, U.; Gronowitz, S.; Cohen, L. A. Tetrahedron Lett. 1993, 34, 6471–
6474.
Continued efforts on the optimization and definition of the scope
of the Larock macrocyclization reaction, the examination of the reverse
macrocyclization order, and the extension of the approach to additional
natural products and their key analogues are in progress and will be
disclosed in due course.
(16) Details are provided in Supporting Information.
(17) (a) Boger, D. L.; Kim, S. H.; Mori, Y.; Weng, J.-H.; Rogel, O.; Castle,
S. L.; McAtee, J. J. J. Am. Chem. Soc. 2001, 123, 1862–1871. (b) Boger,
D. L.; Kim, S. H.; Miyazaki, S.; Strittmatter, H.; Weng, J.-H.; Mori, Y.;
Rogel, O.; Castle, S. L.; McAtee, J. J. J. Am. Chem. Soc. 2000, 122, 7416–
7417.
Acknowledgment. In memory of David S. Lewy. We gratefully
acknowledge the financial support of the National Institutes of Health
(CA041101) and the Skaggs Institute for Chemical Biology. We wish
to thank Dr. S. B. Singh (Merck) for authentic samples of 1 and 2.
We wish to especially thank M. Tichenor for introducing improvements
to the Larock macrocyclization and subsequent elaboration to the DEF
ring system; Dr. J. Cottell for initiating studies on the ABCD ring
system; and D. S. Lewy, Drs. A. Pichota, L. Resnick, and W. Han for
exploration of early stage routes to the DEF ring system in which the
syntheses of the amino acid subunits were first developed. J.G. and
J.D.T. were Skaggs fellows.
(18) Reddy, K. L.; Sharpless, K. B. J. Am. Chem. Soc. 1998, 120, 1207–1217.
(19) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457–2483.
(20) Trzupek, J. D. Ph.D. Dissertation, 2006.
(21) Jiang, W.; Wanner, J.; Lee, R. J.; Bounaud, P.-Y.; Boger, D. L. J. Am.
Chem. Soc. 2002, 124, 5288-5290 and 2003, 125, 1877-1887.
(22) (a) Boger, D. L. Med. Res. ReV. 2001, 21, 356–381. (b) Boger, D. L.;
Miyazaki, S.; Kim, S. H.; Wu, J. H.; Loiseleur, O.; Castle, S. L. J. Am.
Chem. Soc. 1999, 121, 3226–3227 and 10004-10011. (c) Boger, D. L.;
Castle, S. L.; Miyazaki, S.; Wu, J. H.; Beresis, R. T.; Loiseleur, O. J. Org.
Chem. 1999, 64, 70–80. (d) Boger, D. L.; Borzilleri, R. M.; Nukui, S.;
Beresis, R. T. J. Org. Chem. 1997, 62, 4721–4736. (e) Boger, D. L.;
Borzilleri, R. M.; Nukui, S. Bioorg. Med. Chem. Lett. 1995, 5, 3091–3096.
(f) Boger, D. L.; Borzilleri, R. M. Bioorg. Med. Chem. Lett. 1995, 5, 1187–
1190. (g) Crowley, B. M.; Boger, D. L. J. Am. Chem. Soc. 2006, 128,
2885–2892.
(23) Crowley, B. M.; Mori, Y.; McComas, C. C.; Tang, D.; Boger, D. L. J. Am.
Supporting Information Available: Full experimental details are
provided. This material is available free of charge via the Internet at http://
pubs.acs.org.
Chem. Soc. 2004, 126, 4310–4317.
(24) Abbreviations: DEPBT, 3-(diethoxyphosphoryloxy)-1,2,3-benzotriazin-4-
one; DtBPT, 1,1′-bis(di-tert-butylphosphino)ferrocene; EDCI, 1-[3-(di-
methyl-amino)propyl]-3-ethylcarbodiimide hydrochloride; HOAt, 1-hydroxy-
7-azabenzotriazole; PyBOP, (benzotriazol-1-yl)tripyrrolidinophosphonium
hexafluorophosphate.
References
(1) (a) Kaneko, I.; Fearon, D. T.; Austen, K. F. J. Immunol. 1980, 124, 1194–
1198. (b) Tachikawa, K.; Hasumi, K.; Endo, A. Thromb. Haemost. 1997,
JA907193B
9
16038 J. AM. CHEM. SOC. VOL. 131, NO. 44, 2009