3972
R. Luna-García et al. / Journal of Organometallic Chemistry 694 (2009) 3965–3972
(o) H. Reyes, R. Santillan, M.E. Ochoa, M. Romero, N. Farfán, J. Mex. Chem. Soc.
51 (2007) 39–44;
(p) V. Barba, E. Vega, R. Luna, H. Höpfl, H.I. Beltrán, L.S. Zamudio-Rivera, J.
Organomet. Chem. 692 (2007) 731–739.
(f) C. Ma, J. Li, R. Zhang, D. Wang, Inorg. Chim. Acta 358 (2005) 4575–4580;
(g) H.D. Yin, F.H. Li, L.W. Li, G. Li, J. Organomet. Chem. 692 (2007) 1010–1019.
[10] (a) C. Pelizzi, G. Pelizzi, J. Chem. Soc., Dalton Trans. (1980) 1970–1973;
(b) C. Pelizzi, G. Pelizzi, G. Predieri, J. Organomet. Chem. 263 (1984) 9–20;
(c) C. Carini, G. Pelizzi, P. Tarasconi, C. Pelizzi, K.C. Molloy, P.C. Waterfield, J.
Chem. Soc., Dalton Trans. (1989) 289–293;
[3] (a) For reports on tin complexes derived from salen or salan type ligands see:
A. van den Bergen, R.J. Cozens, K.S. Murray, J. Chem. Soc. A (1970) 3060–3064;
(b) K. Kawakami, M. Miya-Uchi, T. Tanaka, J. Inorg. Nucl. Chem. 33 (1971)
3373–3780;
(d) S.O. Sommerer, G.J. Palenik, Inorg. Chim. Acta 183 (1991) 217–220;
(e) P. Mazza, M. Orcesi, C. Pelizzi, G. Pelizzi, G. Predieri, F. Zani, J. Inorg.
Biochem. 48 (1992) 251–270;
(f) G.F. de Sousa, J. Valdés-Martínez, G.E. Pérez, R.A. Toscano, A. Abras, C.A.L.
Filgueiras, J. Braz. Chem. Soc. 13 (2002) 559–564;
(g) G.F. de Sousa, V.M. Deflon, M.T.doP. Gambardella, R.H.P. Francisco, J.D.
Ardisson, E. Niquet, Inorg. Chem. 45 (2006) 4518–4525;
(h) A. González, E. Gómez, A. Cortés-Lozada, S. Hernández, T. Ramírez-Apan, A.
Nieto-Camacho, Chem. Pharm. Bull. 57 (2009) 5–15.
(c) M. Calligaris, G. Nardin, L. Randaccio, J. Chem. Soc., Dalton Trans. (1972)
2003–2006;
(d) C.A. Obafemi, A.B. Ejenavi, D.O. Kolawole, J.K. Oloke, Inorg. Chim. Acta 151
(1988) 21–27;
(e) S.-G. Teoh, G.-Y. Yeap, C.-C. Loh, L.-W. Foong, S.-B. Teo, H.-K. Fun,
Polyhedron 16 (1997) 2213–2221;
(f) J. Parr, A.T. Ross, A.M.Z. Slawin, Inorg. Chem. Commun. 1 (1998) 159–160;
(g) D.K. Dey, M.K. Saha, M.K. Das, N. Bhartiya, R.K. Bansal, G. Rosair, S. Mitra,
Polyhedron 18 (1999) 2687–2696;
(h) D.K. Dey, M.K. Das, H. Nöth, Z. Naturforsch. 54b (1999) 145–154;
(i) M.S. Singh, K. Tawade, A.K. Singh, Main Group Met. Chem. 22 (1999) 175–
178;
(j) D.K. Dey, M.K. Saha, S. Mitra, R.K. Bansal, L. Dahlenburg, Chem. Lett. (2000)
1190–1991;
[11] For a review see: D.A. Atwood, M.J. Harvey, Chem. Rev. 101 (2001) 37–52.
[12] (a) For further macrocyclic structures derived from salen and salan ligands
see: S. Mizukami, H. Houjou, Y. Nagawa, M. Kanesato, Chem. Commun. (2003)
1148–1149;
(b) L.C. Nathan, J.E. Koehne, J.M. Gilmore, K.A. Hannibal, W.E. Dewhirst, T.D.
Mai, Polyhedron 22 (2003) 887–894;
(c) J. Wagler, G. Roewer, Inorg. Chim. Acta 360 (2007) 1717–1724.
[13] (a) F. Tisato, F. Refosco, U. Mazzi, G. Bandoli, M. Nicolini, Inorg. Chim. Acta 189
(1991) 97–103;
(k) R. García-Zarracino, J. Ramos-Quiñones, H. Höpfl, J. Organomet. Chem. 664
(2002) 188–200;
(l) H.I. Beltran, L.S. Zamudio-Rivera, T. Mancilla, R. Santillan, N. Farfan, Chem.
Eur. J. 9 (2003) 2291–2306;
(m) D. Cunningham, K. Gilligan, M. Hannon, C. Kelly, P. MacArdle, A. O’Malley,
Organometallics 23 (2004) 984–994.
(b) P. Wei, T. Keizer, D.A. Atwood, Inorg. Chem. 38 (1999) 3914–3918.
[14] The Cambridge Structural Database: A quarter of a million crystal structures
and rising, Cambridge Crystallographic Data Centre, version 5.30, November
2008, Cambridge, UK: F.H. Allen, Acta Crystallogr. B58 (2002) 380–388.
[15] (a) M.R.A. Pillai, C.S. John, J.M. Lo, D.E. Troutner, M. Corlija, W.A. Volkert, R.A.
Holmes, Nucl. Med. Biol. 20 (1993) 211–216;
[4] H. Beraldo, G.M. de Lima, Anti-fungal activity of organotin compounds, in: A.G.
Davies, M. Gielen, K.H. Pannell, E.R.T. Tiekink (Eds.), Tin Chemistry
–
Fundamentals, Frontiers and Applications, Wiley, Chichester, UK, 2008, pp.
443–453.
(b) Y.-S. Xie, Y. Xue, F.-P. Kou, R.-S. Lin, Q.-L. Liu, J. Coord. Chem. 53 (2001) 91–
97.
[5] (a) M. Nath, R. Yadav, M. Gielen, H. Dalil, D. Vos, G. Eng, Appl. Organomet.
Chem. 11 (1997) 727–736;
[16] R. Luna-García, B.M. Damián-Murillo, V. Barba, H. Höpfl, H.I. Beltrán, L.S.
Zamudio-Rivera, Chem. Commun. (2005) 5527–5529.
(b) L. Pellerito, L. Nagy, Coord. Chem. Rev. 224 (2002) 111–150;
(c) C. Pettinari, F. Marchetti, Chemical and biotechnological developments in
organotin cancer chemotherapy, in: A.G. Davies, M. Gielen, K.H. Pannell, E.R.T.
Tiekink (Eds.), Tin Chemistry – Fundamentals, Frontiers and Applications,
Wiley, Chichester, UK, 2008, pp. 454–468.
[17] (a) Bruker Analytical X-ray Systems. SMART: Bruker Molecular Analysis
Research Tool, Versions 5.057 and 5.618, 1997 and 2000;
(b) Bruker Analytical X-ray Systems. SAINT+NT, Versions 6.01 and 6.04, 1999 and
2001;
(c) G.M. Sheldrick, SHELX86, Program for Crystal Structure Solution, University
of Göttingen, Germany, 1986;
(d) Bruker Analytical X-ray Systems. SHELXTL-NT Versions 5.10 and 6.10, 1999
and 2000.
[6] P.G. Lacroix, N. Farfán, Optical properties of tin-based coordination
compounds, in: A.G. Davies, M. Gielen, K.H. Pannell, E.R.T. Tiekink (Eds.), Tin
Chemistry – Fundamentals Frontiers and Applications, Wiley, Chichester, UK,
2008, pp. 351–360.
[7] G.-D. Liu, J.-P. Liao, Y.-Z. Fang, S.-S. Huang, G.-L. Sheng, R.-Q. Yu, Anal. Sci. 18
(2002) 391–395.
[18] H. Friebolin, Ein- und zweidimensionale NMR Spektroskopie, second ed., VCH
Stuttgart, 1992. p. 294.
[19] (a) K. Jurkschat, C. Mügge, A. Tzschach, A. Zschunke, M.F. Larvin, V.A.
Pestunovich, M.G. Voronkov, J. Organomet. Chem. 139 (1977) 279–282;
(b) R.G. Swisher, R.R. Holmes, Organometallics 3 (1984) 365–369.
[20] The chemical shift differences between 1–2 and 3 can be attributed to the
different steric and electronic effects of the organic groups attached to the tin
atom [3k].
[8] (a) H. Jing, S.K. Edulji, J.M. Gibbs, C.L. Stern, H. Zhou, S.T. Nguyen, Inorg. Chem.
43 (2004) 4315–4327;
(b) D.J. Darensbourg, P. Ganguly, D. Billodeaux, Macromolecules 38 (2005)
5406–5410;
(c) K. Matsumoto, B. Saito, T. Katsuki, Chem. Commun. (2007) 3619–3627.
[9] (a) R. Garcia-Zarracino, H. Höpfl, Angew. Chem. Int. Ed. 43 (2004) 1507–1511;
(b) C. Ma, Y. Han, R. Zhang, D. Wang, Dalton Trans. (2004) 1832–1840;
(c) R. Garcia-Zarracino, H. Höpfl, J. Am. Chem. Soc. 127 (2005) 3120–3130;
(d) R. Garcia-Zarracino, H. Höpfl, Appl. Organomet. Chem. 19 (2005) 451–457;
[21] T.P. Lockhart, W.F. Manders, Inorg. Chem. 25 (1986) 892–895.
2
[22] For this purpose the average value, JSn–H = 109.5 Hz, has been used.
[23] H. Höpfl, J. Organomet. Chem. 581 (1999) 129–149.
[24] The first value corresponds to Sn1–O1–C1–C2 and the second to Sn1–O2–C14–
ˇ
O, 1ꢀMeOH and 1ꢀDMSO) average
(e) T.S.B. Baul, C. Masharing, R. Willem, M. Biesemans, M. Holcapek, R. Jirásko,
A. Linden, J. Organomet. Chem. 690 (2005) 3080–3094;
C13. For the solvates of compound 1 (1ꢀ2.5H2
values are given.