Page 5 of 12
Journal of the American Chemical Society
(9) (a) Lee, B.-C.; Chu, T. K.; Dill, K. A.; Zuckermann, R. N.
(24) Sui, Q.; Borchardt, D.; Rabenstein, D. L. Kinetics and
Equilibria of Cis/Trans Isomerization of Backbone Amide Bonds in
Peptoids. J. Am. Chem. Soc. 2007, 129 (39), 12042–12048.
(25) Butterfoss, G. L.; Renfrew, P. D.; Kuhlman, B.; Kirshenbaum,
K.; Bonneau, R. A Preliminary Survey of the Peptoid Folding
Landscape. J. Am. Chem. Soc. 2009, 131 (46), 16798–16807.
(26) Mukherjee, S.; Zhou, G.; Michel, C.; Voelz, V. A. Insights into
Peptoid Helix Folding Cooperativity from an Improved Backbone
Potential. J. Phys. Chem. B 2015, 119 (50), 15407–15417.
(27) Voelz, V. A.; Dill, K. A.; Chorny, I. Peptoid conformational
free energy landscapes from implicit-solvent molecular simulations
in AMBER. Biopolymers 2011, 96 (5), 639–650.
Biomimetic Nanostructures: Creating a High-Affinity Zinc-Binding
Site in a Folded Nonbiological Polymer. J. Am. Chem. Soc. 2008, 130
(27), 8847–8855. (b) Reddy, M. M.; Kodadek, T. Protein
“fingerprinting” in complex mixtures with peptoid microarrays. Proc.
Natl. Acad. Sci. U. S. A. 2005, 102 (36), 12672–12677. (c) Knight, A. S.;
Zhou, E. Y.; Pelton, J. G.; Francis, M. B. Selective Chromium(VI)
Ligands Identified Using Combinatorial Peptoid Libraries. J. Am.
Chem. Soc. 2013, 135(46), 17488–17493. (c) Baskin, M.; Maayan, G. A
rationally designed metal-binding helical peptoid for selective
recognition processes. Chem Sci. 2016, 7 (4), 2809–2820. (d) Pirrung,
M. C.; Park, K.; Tumey, L. N. 19F-Encoded Combinatorial Libraries:
Discovery of Selective Metal Binding and Catalytic Peptoids. J. Comb.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Chem. 2002,
4 (4), 329–344. (e) Maayan, G.; Ward, M. D.;
Kirshenbaum, K. Folded biomimetic oligomers for enantioselective
catalysis. Proc. Natl. Acad. Sci. 2009, 106 (33), 13679–13684.
(10) Armand, P.; Kirshenbaum, K.; Goldsmith, R. A.; Farr-Jones, S.;
Barron, A. E.; Truong, K. T.; Dill, K. A.; Mierke, D. F.; Cohen, F. E.;
Zuckermann, R. N.; Bradley E. K. NMR determination of the major
solution conformation of a peptoid pentamer with chiral side chains.
Proc. Natl. Acad. Sci. 1998, 95 (8), 4309–4314.
(11) Murnen, H. K.; Rosales, A. M.; Jaworski, J. N.; Segalman, R. A.;
Zuckermann, R. N. Hierarchical Self-Assembly of a Biomimetic
Diblock Copolypeptoid into Homochiral Superhelices. J. Am. Chem.
Soc. 2010, 132 (45), 16112–16119.
(12) Stringer, J. R.; Crapster, J. A.; Guzei, I. A.; Blackwell, H. E.
Extraordinarily Robust Polyproline Type I Peptoid Helices Generated
via the Incorporation of α-Chiral Aromatic N-1-Naphthylethyl Side
Chains. J. Am. Chem. Soc. 2011, 133 (39), 15559–15567.
(13) (a) Gorske, B. C.; Mumford, E. M.; Gerrity, C. G.; Ko, I. A
Peptoid Square Helix via Synergistic Control of Backbone Dihedral
Angles. J. Am. Chem. Soc. 2017, 139 (24), 8070–8073. (b) Roy, O.;
Dumonteil, G.; Faure, S.; Jouffret, L., Kriznik, A.; Taillefumier, C.
Highly homogeneous and robust PolyProline type I helices from
peptoids with non-aromatic α-chiral side chains. J. Am. Chem. Soc.
2017, 139 (38), 13533–13540.
(14) Crapster, J. A.; Guzei, I. A.; Blackwell, H. E. A Peptoid Ribbon
Secondary Structure. Angew. Chem. Int. Ed. 2013, 52 (19), 5079–5084.
(15) Huang, K.; Wu, C. W.; Sanborn, T. J.; Patch, J. A.;
Kirshenbaum, K.; Zuckermann, R. N.; Barron, A. E.; Radhakrishnan,
I. A Threaded Loop Conformation Adopted by a Family of Peptoid
Nonamers. J. Am. Chem. Soc. 2006, 128 (5), 1733–1738.
(16) Mannige, R. V.; Haxton, T. K.; Proulx, C.; Robertson, E. J.;
Battigelli, A.; Butterfoss, G. L.; Zuckermann, R. N.; Whitelam, S.
Peptoid nanosheets exhibit a new secondary-structure motif. Nature
2015, 526 (7573), 415–420.
(17) Nam, K. T.; Shelby, S. A.; Choi, P. H.; Marciel, A. B.; Chen, R.;
Tan, L.; Chu, T. K.; Mesch, R. A.; Lee, B.-C.; Connolly, M. D.;
Kisielowski, C.; Zuckermann R. N. Free-floating ultrathin two-
dimensional crystals from sequence-specific peptoid polymers. Nat.
Mater. 2010, 9 (5), 454–460.
(18) Armand, P.; Kirshenbaum, K.; Falicov, A.; Dunbrack, R. L.;
Dill, K. A.; Zuckermann, R. N.; Cohen, F. E. Chiral N-substituted
glycines can form stable helical conformations. Fold. Des. 1997, 2 (6),
369–375.
(19) Gorske, B. C.; Blackwell, H. E. Tuning Peptoid Secondary
Structure with Pentafluoroaromatic Functionality: A New Design
Paradigm for the Construction of Discretely Folded Peptoid
Structures. J. Am. Chem. Soc. 2006, 128 (44), 14378–14387.
(20) Gorske, B. C.; Bastian, B. L.; Geske, G. D.; Blackwell, H. E.
Local and Tunable n→π* Interactions Regulate Amide Isomerism in
the Peptoid Backbone. J. Am. Chem. Soc. 2007, 129 (29), 8928–8929.
(21) Gorske, B. C.; Stringer, J. R.; Bastian, B. L.; Fowler, S. A.;
Blackwell, H. E. New Strategies for the Design of Folded Peptoids
Revealed by a Survey of Noncovalent Interactions in Model Systems.
J. Am. Chem. Soc. 2009, 131 (45), 16555–16567.
(22) Aliouat, H.; Caumes, C.; Roy, O.; Zouikri, M.; Taillefumier, C.;
Faure, S. 1,2,3-Triazolium-Based Peptoid Oligomers. J. Org. Chem.
2017, 82 (5), 2386–2398.
(23) Gimenez, D.; Aguilar, J. A.; Bromley, E. H. C.; Cobb, S. L.
Angew. Chem. Int. Ed. 2018, 57 (33), 10549–10553.
ACS Paragon Plus Environment