5868
S. J. Taylor et al. / Bioorg. Med. Chem. Lett. 19 (2009) 5864–5868
Res. 2000, 87, 992; (b) Imig, J. D. Cardiovasc Drug Rev. 2006, 24, 169.
Dicyclohexylurea (DCU) displayed an IC50 of 186 nM in the h-SEH enzymatic
assay in our hands, and a hLM/rLM t1/2 of 300/78 in our assay. 1-Cyclohexyl-3-
dodecylurea (CDU) displayed and IC50 of 130 nM in the hSEH enzymatic assay.
This LM data could be confounded by the low HT solubility of these analogs, (all
(in vitro) clearance for this analog. The pyridone analog 12 showed
very low levels in the plasma, however these were sustained over
the course of 6 h, implying absorption rather than metabolically
driven clearance could be a problem for this class of inhibitors.
The 2-trifluoromethoxy benzylamine analog 39 failed to show
any plasma exposure in these experiments. Compound 34 showed
almost a 5-fold increase in plasma concentration in rat compared
to 14, and this exposure was sustained over a 6 h period. In addi-
tion, the nitrile analog 40 showed micromolar exposure through-
out the experiment. This study highlighted that, for several
derivatives, microsomal half-life was not predictive of their
in vivo exposure (extent and duration), as highlighted by 14 which
showed sustained exposure despite a high in vitro predicted clear-
ance (80% Qh).
<1 lg/mL).
3. (a) Larsen, B. T.; Miura, H.; Hatoum, O. A.; Campbell, W. B.; Hammock, B. D.;
Zeldin, D. C.; Falck, J. R.; Gutterman, D. D. Am. J. Physiol. Heart Circ. Physiol. 2006,
290, H491; (b) Spector, A. A.; Fang, X.; Snyder, G. D.; Weintraub, N. L. Prog. Lipid
Res. 2004, 43, 55; (c) Batchu, S. N.; Law, E.; Falck, J. R.; Seubert, J. M. J. Mol. Cell.
Cardiol. 2009, 46, 67.
4. Imig, J. D.; Zhao, X.; Capdevila, J. H.; Morisseau, C.; Hammock, B. D. Hypertension
2002, 39, 690.
5. Zhao, X.; Yamamoto, T.; Newman, J. W.; Kim, I.-H.; Watanabe, T.; Hammock, B.
D.; Stewart, J.; Pollock, J. S.; Pollock, D. M.; Imig, J. D. J. Am. Soc. Nephrol. 2004,
15, 1244.
6. Smith, K. R.; Pinkerton, K. E.; Watanabe, T.; Pedersen, T. L.; Ma, S. J.; Hammock,
B. D. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 2186.
7. (a) Morisseau, C.; Goodrow, M. H.; Dowdy, D.; Zheng, J.; Greene, J. F.; Sanborn, J.
R.; Hammock, B. D. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 8849; (b) Morisseau, C.;
Goodrow, M. H.; Newman, J. W.; Wheelock, C. E.; Dowdy, D. L.; Hammock, B. D.
Biochem. Pharmacol. 2002, 63, 1599; (c) Kim, I. H.; Morisseau, C.; Watanabe, T.;
Hammock, B. D. J. Med. Chem. 2004, 47, 2110; (d) Olearczyk, J. J.; Field, M. B.;
Kim, I. H.; Morisseau, C.; Hammock, B. D.; Imig, J. D. J. Pharmacol. Exp. Ther.
2006, 318, 1307; (e) Kim, I. H.; Tsai, H. J.; Nishi, K.; Kasagami, T.; Morisseau, C.;
Hammock, B. D. J. Med. Chem. 2007, 50, 5217; (f) Hwang, S. H.; Tsai, H. J.; Liu, J.
Y.; Morisseau, C.; Hammock, B. D. J. Med. Chem. 2007, 50, 3825.
8. (a) Kim, I. H.; Heirtzler, F. R.; Morisseau, C.; Nishi, K.; Tsai, H. J.; Hammock, B. D.
J. Med. Chem. 2005, 48, 3621; (b) Morisseau, C.; Goodrow, M. H.; Dowdy, D.;
Zheng, J.; Greene, J. F.; Sanborn, J. R.; Hammock, B. D. Proc. Natl. Acad. Sci. U.S.A.
1999, 96, 8849; (c) Shen, H. C.; Ding, F.-X.; Wang, S.; Xu, S.; Chen, H. S.; Tong, X.;
Tong, V.; Mitra, K.; Kumar, S.; Zhang, X.; Chen, Y.; Zhou, G.; Pai, L.-Y.; Alonso-
Galicia, M.; Chen, X.; Zhang, B.; Tata, J. R.; Berger, J. P.; Colletti, S. L. Bio. Med.
Chem. Lett. 2009, 19, 3398; (d)Shen, H. C.;Ding, F. -X.;Deng, Q.; Xu, S.; Chen, H. -S.;
Tong, X.; Tong, V.; Zhang, X.; Chen, Y.; Zhou, G.; Pai, L.-Y.; Alonso-Galicia, M.;
Zhang, B.; Roy, S.; Tata, J. R.; Berger, J. P.; S.L., Colletti Bio. Med. Chem. Lett. 2009, 19,
5314.
9. Gomez, G. A.; Morisseau, C.; Hammock, B. D.; Christianson, D. W. Biochemistry
2004, 43, 4716.
11. Taylor, S. J.; et. al. Abstracts of Papers, Part 2, 212th National Meeting of the
American Chemical Society, Boston, MA, Aug 25–29, 2007.
12. Eldrup, A.B.; Soleymanzadeh, S.; Taylor, S. J.; Muegge, I.; Farrow, N. A.; Joseph,
D.; McKellop, K.; Man, C. C.; De Lombaert, S. J. Med. Chem. in press. This
manuscript describes the enzymatic and cellular assays used to determine sEH
inhibition. Cywin, C L; De Lombaert, S.; Eldrup, A. B.; Ingraham, R. H.; Taylor, S.;
Soleymanzadeh, F. WO 06/121719 November 16, 2006.
13. Ingraham, R.; et al. U.S. Patent 6,794,158, September 21, 2004.
14. Taylor, S. J.; Netherton, M. A. J. Org. Chem. 2006, 71, 397.
15. Ingraham, R. H.; Cardozo, M. G.; Grygon, C. Anne; Kroe, R. Rebecca; Proudfoot, J.
R. WO 02/082082.
These studies also demonstrated that combination of the
dichlorobenzylamine with the arylamide of 1 resulted in low
molecular weight, potent sEH inhibitors, that show extended plas-
ma exposure in rats when dosed orally. A variety of substituents
were tolerated on the RHS of the sEH inhibitor, whereas extension
off the phenylamide with large lipophilic groups was required for
potency against human and rat sEH. By combining a potent aryl
amides with a metabolically stable dichlorobenzyl amines, hybrid
molecules were generated that retained the optimal properties
associated with each series. While low nanomolar potencies were
achieved, the compounds in this hybrid series were still not as po-
tent as the analogous compounds within the benzhydrylamide ser-
ies. These studies serve as the foundation for extended chemical
elaboration of the phenyl moiety to further increase potency, and
to address additional target-independent profiles. However, these
compounds, structurally distinct from the urea-based inhibitors,
still have acceptable profiles such that they can be used as alterna-
tive tools to assess the in vivo pharmacological effect of sEH inhi-
bition in appropriate animal models of cardiovascular and
inflammatory diseases.
Acknowledgements
We thank John Proudfoot and Derek Cogan with their help in
preparation of the graphics for this Letter, and Michael August
and Lori Patnaude for running the HT screen.
16. Eldrup, A. B.; Farrow, N. A.; Kowalski, J. A.; De Lombaert, S.; Muegge, I. A.;
Soleymanzadeh, F.; Swinamer, A. D.; Taylor, S. J. WO 07/098352 August 30,
2007.
References and notes
17. An alignment of the rat and human protein sequences reveals that there are
several amino-acid differences within the ligand binding site. Many of these
changes are close to the region of the protein that would influence the SAR
described in Table 2.
1. (a) Fleming, I. Circ. Res. 2001, 89, 753; (b) Spector, A. A.; Norris, A. W. Am. J.
Physiol. Cell Physiol. 2007, 292, C996.
2. (a) Yu, Z.; Xu, F.; Huse, L. M.; Morriseau, C.; Draper, A. J.; Newman, J. W.; Parker,
C.; Graham, L.; Engler, M. M.; Hammock, B. D.; Zeldin, D. C.; Kroetz, D. L. Circ.