7120 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 22
Nagle et al.
multicell temperature-controlled block. Temperature was mon-
itored with a thermistor inserted into a 1 mL quartz cuvette
containing the same volume of water as in the sample cells.
Absorbance changes at 260 nm were monitored from a range of
20 to 90 °C with a heating rate of 1 °C/min and a data collection
rate of five points per °C. The salmon sperm DNA was
(b) Nielsen, P. E. Targeting double stranded DNA with peptide nucleic
acid (PNA). Curr. Med. Chem. 2001, 8, 545–550. (c) Nielsen, P. E.
Peptide nucleic acid: a versatile tool in genetic diagnostics and molec-
ular biology. Curr. Opin. Biotechnol. 2001, 12, 16–20. (d) Uhlmann,
E.; Peyman, A.; Breipohl, G.; Will, D. W. PNA: synthetic polyamide
nucleic acids with unusual binding properties. Angew. Chem., Int. Ed.
1998, 37, 2796–2823. (e) Nielsen, P. E. Peptide nucleic acid. A
molecule with two identities. Acc. Chem. Res. 1999, 32, 624–630.
(6) Pilch, S. D.; Poklar, N.; Gelfand, C. A.; Law, S. M.; Breslauer,
K. J.; Barid, E. E.; Dervan, P. B. Binding of a hairpin polyamide in
the minor groove of DNA: sequence-specific enthalpic discrimina-
tion. Proc. Nat. Acad. Sci. U.S.A. 1996, 93, 8306–8311.
(7) Francesconi, I.; Wilson, W. D.; Tanious, F. A.; Hall, J. E.; Bender,
B. C.; Tidwell, R. R.; McCurdy, D.; Boykin, D. W. 2,4-Diphenyl
furan diamidines as novel anti-Pneumocystis carinii pneumonia
agents. J. Med. Chem. 1999, 42, 2260–2265.
(8) Neidle, S.; Kelland, L. R.; Trent, J. O.; Simpson, I. J.; Boykin,
D. W.; Kumar, A.; Wilson, W. D. Cytotoxicity of bis(phenylami-
dinium) furan alkyl derivatives in human tumour cell lines: relation
to DNA minor groove binding. Bioorg. Med. Chem. 1997, 7, 1403–
1408.
(9) Lansiaux, A.; Dassonneville, L.; Facompre, M.; Kumar, A.;
Stephens, C. E.; Bajic, M.; Tanious, F.; Wilson, W. D.; Boykin,
D. W.; Bailly, C. Distribution of furamidine analogues in tumor
cells: influence of the number of positive charges. J. Med. Chem.
2002, 45, 1994–2002.
(10) Rodriguez, F.; Rozas, I.; Kaiser, M.; Brun, R.; Nguyen, B.; Wilson,
W. D.; Garcia, R. N.; Dardonville, C. New bis(2-aminoimidazo-
line) and bis-guanidne DNA minor groove binders with potent in
vivo antitrypanosomal and antiplasmodial activity. J. Med. Chem.
2008, 51, 909–923.
(11) (a) Ismail, M. A.; Arafa, R. K.; Brun, R.; Wenzler, T.; Miao, Y.;
Wilson, W. D.; Generaux, C.; Bridges, A.; Hall, J. E.; Boykin,
D. W. Synthesis, DNA affinity, and antiprotozoal activity of linear
dications: terphenyl diamidines and analogues. J. Med. Chem.
2006, 49, 5324–5332. (b) Bailly, C.; Chaires, J. B. Sequence-specific
DNA minor groove binders. Design and synthesis of netropsin and
distamycin analogues. Bioconjugate Chem. 1998, 9, 513–538.
(12) Nguyen, B.; Lee, M. P. H.; Hamelberg, D.; Joubert, A.; Bailly, C.;
Brun, R.;Neidle, S.;Wilson, D. W. Strong binding in the DNA minor
grove by an aromatic diamidine with a shape that does not match the
curvature of the groove. J. Am. Chem. Soc. 2002, 124, 13680–13681.
(13) Dardonville, C.; Goya, P.; Rozas, I.; Alsasua, A.; Martin, I.;
Borrego, M. J. New aromatic iminoimidazolidine derivatives as
alpha1-adrenoceptor antagonists: a novel synthetic approach and
pharmacological activity. Bioorg. Med. Chem. 2000, 8, 1567–1577
and references cited therein .
(14) (a) Rodriguez, F.; Rozas, I.; Ortega, J. E.; Meana, J. J.; Callado, L.
F. Guanidine and 2-aminoimidazoline aromatic derivatives as R2-
adrenoceptor antagonists, 1: towards new antidepressants with
heteroatomic linkers. J. Med. Chem. 2007, 50, 4516–4527.
(b) Rodriguez, F.; Rozas, I.; Ortega, J. E.; Erdozain, A. M.; Meana, J.
J.; Callado, L. F. Guanidine and 2-aminoimidazoline aromatic deriva-
tives as R2-adrenoceptor antagonists, 2: exploring aliphatic linkers.
J. Med. Chem. 2008, 51, 3304–3312. (c) Rodriguez, F.; Rozas, I.;
Ortega, J. E.; Erdozain, A. M.; Meana, J. J.; Callado, L. F. Guanidine
and 2-aminoimidazoline aromatic derivatives as R2-adrenoceptor
ligands: searching for structure-activity relationships. J. Med. Chem.
2009, 52, 601–609.
(15) Between others: (a) Shie, J.-J.; Fang, J.-M.; Wang, S.-Y.; Tsai,
K.-C.; Cheng, Y.-S.E.; Yang, A.-S.; Hsiao, S.-C.; Su, C.-Y.; Wong,
C.-H. Synthesis of Tamiflu and its phosphonate congeners posses-
sing potent anti-influenza activity. J. Am. Chem. Soc. 2007, 129,
11892–11893. (b) Sansone, F.; Dudic, M.; Donofrio, G.; Rivetti, C.;
Baldini, L.; Casnati, A.; Cellai, S.; Ungaro, R. DNA condensation and
cell transfection properties of guanidinium calixarenes: dependence on
macrocycle lipophilicity, size and conformation. J. Am. Chem. Soc.
2006, 128, 14528–14536. (c) Atkinson, R. N.; Moore, L.; Tobin, J.;
King, S. B. Asymmetric synthesis of conformationally restricted
L-arginine analogues as active site probes of nitric oxid synthase.
J. Org. Chem. 1999, 64, 3467–3475.
(16) Goonan, A.; Kahvedzic, A.; Rodriguez, F.; Nagle, P.; McCabe, T.;
Rozas, I.; Erdozain, A. M.; Meana, J. J.; Callado, L. F. Novel
synthesis and pharmacological evaluation as R2-adrenoceptor
ligands of O-phenylisouronium salts. Bioorg. Med. Chem. 2008,
16, 8210–8217.
purchased from Sigma Aldrich (extinction coefficient ε260
=
6600 cm-1 M-1 base). A quartz cell with a 1 cm path length was
filled with a 1 mL solution of DNA polymer or DNA-
compound complex. The DNA polymer (150 μM base) and
the compound solution (15 μM) were prepared in a phosphate
buffer [0.01 M Na2HPO4/NaH2PO4], adjusted to pH 7) so that a
compound to DNA base ratio of 0.1 was obtained. The thermal
melting temperatures of the duplex or duplex-compound com-
plex obtained from the first derivative of the melting curves are
reported.
Poly(dA) Poly(dT) Experiments. Thermal melting experi-
3
ments were conducted with a Cary 300 Bio UV-visible spectro-
photometer (Varian, Inc.) in 1 cm quartz cells. The solutions
were prepared in MES buffer containing 10 mM 2-(N-morpho-
lino)ethanesulfonic acid, 0.1 M NaCl, 1 mM EDTA, pH 6.25.
The DNA polymer poly(dA) poly(dT) was purchased from
3
Amersham Biosciences (NJ) and used with an extinction coeffi-
cient ε260 = 6000 cm-1 M-1 base, room temperature, MES
buffer. The samples were mixed with ratio of one compound per
two base pairs and scanned up and down a temperature range of
25-95 °C with a heating/cooling rate of 0.5 °C/min. Tempera-
ture was recorded with a temperature probe inserted into a
cuvette filled with water. The procedure was repeated twice to
generate four thermal melting curves for each sample. One
strong transition was observed for every curve. The data were
processed with a software package included with the instrument.
Acknowledgment. We truly thank Dr. W. David Wilson
and Dr. Binh Nguyen at Georgia State University, GA, for
providing us with DNA thermal denaturation experiments for
our compounds. We express our gratitude to Prof. John M.
Kelly for his comments and advice. This research was sup-
ported by Science Foundation Ireland (Grant SFI-CHE275).
P.S.N. and A.K. thank SFI for generous funding. F.R. thanks
the Consejeria de Educacion Cultura y Deporte de la Comu-
nidad Autonoma de La Rioja for his grant.
Supporting Information Available: Preparation details and 1H
NMR, 13C NMR, and MS data of all new Boc-protected
derivatives (1a-8a, 1b-8b, 1d-6d, 8d, 1e-6e, 8e, 1f-6f, 8f,
12) and all monoguanidines and mono-2-aminoimidazolines
(1g-8g, 1h-6h, 8h); a table containing the combustion analysis
data of the new target compounds; 1H and 13C NMR spectra for
the final compounds (1c-8c). This material is available free of
References
(1) (a) Neidle, S. DNA minor-groove recognition by small molecules.
Nat. Prod. Rep. 2001, 18, 291–309. (b) Warren, C. L.; Kartochvil,
N. C. S.; Hauschild, K. E.; Foister, S.; Brezinski, M. L.; Dervan, P. B.;
Phillips, G. N., Jr.; Ansari, A. Z. Defining the sequence-recognition
profile of DNA-binding molecules. Proc. Natl. Acad. Sci. U.S.A.
2006, 103, 867–872.
(2) Chemotherapeutic Agents. In Burger’s Medicinal Chemistry and
Drug Discovery, 6th ed.; Abraham, D. J., Ed.; John Wiley and Sons,
Inc.: Hoboken, NJ, 2003; Vol. 5.
(3) Bell, A.; Kittler, L.; Lober, G.; Zimmer, C. DNA binding proper-
ties of minor groove binders and their influence on the topoisome-
rase II cleavage reaction. J. Mol. Recognit. 1997, 10, 245–255.
(4) Smolina, I. V.; Demidov, V. V.; Frank-Kamenetskii, M. D. Paus-
ing of DNA polymerases on duplex DNA templates due to ligand
binding in vitro. J. Mol. Biol. 2003, 326, 1113–1125.
(5) Recent reviews: (a) Kumar, V. A. Structural preorganization of
peptide nucleic acids: chiral cationic analogues with five- or six-
membered ring structures. Eur. J. Org. Chem. 2002, 2021–2032.
(17) (a) Dumas, J.; Khire, U.; Lowinger, T. B.; Paulsen, H.; Riedl, B.;
Scott, W. J.; Smith, R. A.; Wood, J. E.; Hatoum-Mokdad, H.;
Johnson, J.; Lee, W.; Redman, A.; Sibley, R.; Renick, J. Inhibition
of raf Kinase Using Substituted Heterocyclic Ureas. Patent US
244120, 2007. (b) Botez, I.; David-Basei, C.; Gourlaoueen, N.; Nico-
laie, E.; Balavoine, F.; Valette, G.; Serradeil-Le Gal, C. Preparation of