Journal of the American Chemical Society
Page 4 of 5
Ksv = 470 M-1), consistent with PCET activation. Tellingly,
solutions containing fixed concentrations of thiol and phos-
phate and varying concentrations of amide exhibited quench-
ing that retained a first order dependence on the amide concen-
tration, albeit with slightly reduced efficiency (Ksv = 1250 M-
1). However, analogous experiments wherein solutions con-
taining fixed concentrations of both amide and phosphate and
varying concentrations of thiol exhibited no additional
quenching above background. Taken together, these results
indicate that amide PCET in the presence of thiophenol is not
only feasible but is likely the kinetically dominant reaction
pathway for radical generation.
23, 1649. (c) LaLonde, R. L.; William, E.; Brenzovich Jr., W. E.. Benitez,
D.; Tkatchouk, E.; Kelley, K.; Goddard III, W. A.; Toste, F. D. Chem. Sci.
2010, 1, 226. (d) Komeyama, K.; Morimoto, T.; Takaki, K. Angew.
Chem., Int. Ed. 2006, 45, 2938.
1
2
3
4
5
6
7
8
(2) For selected advances in catalytic hydroamination, see: (a) Utsuno-
miya, M.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 126, 2702. (b) Hong, S.;
Marks, T. J. Acc. Chem. Res. 2004, 37, 673. (c) Waser, J.; Gaspar, B.;
Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2006, 128, 11693. (d)
Cochran, B. M.; Michael, F. E. J. Am. Chem. Soc. 2008, 130, 2786. (e)
Shen, X.; Buchwald, S. L. Angew. Chem. Int. Ed. 2010, 49, 564 (f)
Brown, A. R.; Uyeda, C.; Brotherton, C. A.; Jacobsen, E. N. J. Am. Chem.
Soc. 2013, 135, 6747. (g) Sevov, C. S.; Zhou, J. S.; Hartwig, J. F. J. Am.
Chem. Soc. 2014, 136, 3200. (h) Yang. Y.; Shi, S. –L.; Liu, P.; Buchwald,
S. L. Science 2015, 349, 62.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(3) For examples of photoredox-mediated olefin amination, see: (a)
Nguyen, T. M.; Nicewicz, D. A. J. Am. Chem. Soc. 2013, 135, 9588. (b)
Nguyen, T. M.; Manohar, N.; Nicewicz, D.A. Angew. Chem. Int. Ed.,
2014, 53, 6198. (c) Gesmundo, N. J.; Grandjean, J. M.; Nicewicz, D.A.
Org. Lett. 2015, 17, 1316. (d) Musacchio, A. J.; Nguyen, L. Q.; Beard, G.
H.; Knowles, R. R. J. Am. Chem. Soc. 2014, 136, 12217. (e) Hu, Q.-X.;
Chen, J.-R.; Wei, Q.; Liu, F.-L.; Deng, Q.-H.; Beauchemin, A. M.; Xiao,
W.-J. Angew. Chem. Int. Ed., 2014, 53, 12163. (f) Maity, S.; Zheng, N.
Angew. Chem. Int. Ed., 2012, 51, 9562.
(4) (a) Newcomb, M.; Esker, J. L. Tet. Lett. 1990, 32, 1035. (b) Boivin,
J.; Callier-Dublanchet, A.-C.; Quiclet-Sire; B.; Schiano, A.-M.; Zard, S. Z.
Tetrahedron 1995, 51, 6517. (c) Kemper, J.; Studer, A. Angew. Chem.,
Int. Ed. 2005, 44, 4914. (d) Guin, J.; Frohlich, R.; Studer, A. Angew.
Chem. Int. Ed. 2008, 47, 779. (e) Chou, C. M.; Guin, J.; Muck-
Lichtenfeld, C.; Grimme, A.; Studer, A. Chem. Asian. J. 2011, 6, 1197. (f)
Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Barluenga, S.; Hunt, K. W.;
Kranich, R.; Vega, J. A. J. Am. Chem. Soc. 2002, 124, 2233. (g) Tang, Y.;
Li, C. Org. Lett. 2004, 6, 3229.
(5) Choi, G. C.; Knowles, R. R. J. Am. Chem. Soc. 2015, 137, 9226.
(6) (a) Reece, S. Y.; Nocera, D. G. Annu. Rev. Biochem. 2009, 78, 673.
(b) Mayer, J. M. Annu. Rev. Phys. Chem. 2004, 55, 363. (c) Hammes-
Schiffer, S.; Stucherbrukhov, A. A. Chem. Rev., 2010, 110, 6939. (d)
Weinberg, D. R.; Gagliardi, C. J.; Hull, J. F.; Murphy, C. F.; Kent, C. A.;
Westlake, B. C., Paul, A.; Ess, D. H.; McCafferty, D. G., Meyer, T. J.
Chem. Rev. 2012, 112, 4016.
(7) (a) Wenger, O. S. Acc. Chem. Res. 2013, 46, 1517. (b) Gagliardi, C.
J.; Westlake, B. C.; Kent, C. A.; Paul, J. J.; Papanikolas, J. M.; Meyer, T.
J. Coord. Chem. Rev. 2010, 254, 2459. (c) Tarantino, K. T.; Liu, P.;
Knowles, R. R. J. Am. Chem. Soc. 2013, 135, 10022.
(8) (a) Hamilton, D. S.; Nicewicz, D. A. J. Am. Chem. Soc. 2012, 134,
18577. (b) Wilger, D. J.; Grandjean, J.-M.; Lammert, T. R.; Nicewicz, D.
A. Nature Chem., 2014, 6, 720.
(9) Warren, J. J., Mayer, J. M. Proc. Natl. Acad. Sci. U.S.A. 2010, 107,
5282.
(10) (a) Roberts, B. P.; Steel, A. J. J. Chem. Soc., Perkin Trans 2 1994,
2155. (b) Pais, A. A. C. C.; Arnaut, L. G.; Formosinho, S. J. J. Chem Soc.
Perkin Trans. 2, 1998, 2577.
(11) (a) Gagliardi, C. J.; Murphy, C. F.; Binstead, R.A.; Thorp, H. H.;
Meyer, T. J. J. Phys. Chem. C, 2015, 119, 7028. (b) Medina-Ramos, J.;
Oyesanya, O.; Alvarez, J. C. J. Phys. Chem. C, 2013, 117, 902. (c) Kuss-
Petermann, M.; Wenger, O. S. J. Phys. Chem. Lett. 2013, 4, 2535.
(12) Bordwell, F. G.; Cheng, J.-P., Ji, G.-Z.; Satish, A. V.; Zhang, X. J.
Am. Chem. Soc. 1991, 113, 9790.
While the physical origins of this surprising selectivity are
not certain, one potential explanation relates to the differential
hydrogen bond donor abilities of the amide and thiol function-
alities. Multisite PCET oxidations require the formation of a
hydrogen bond between the transferring proton and the
Brønsted base prior to the electron transfer event.15 Density
functional
calculations
(ωB97XD
6-31G++(2d,2p)
CPCM=CH2Cl2) indicate that formation of the amide-
phosphate H-bond complex is more favorable than the thio-
phenol-phosphate H-bond complex by 5.2 kcal/mol.16,17 As
such, there is a significantly higher concentration of amide-
phosphate complex relative to the thiol-phosphate complex in
solution which may contribute to this unusual but synthetically
advantageous selectivity.
In conclusion, we have developed a novel method for olefin
hydroamidation jointly mediated by three distinct catalysts –
an iridium photocatalyst, a phosphate base and a thiol H-atom
donor. This protocol enables catalytic amidyl generation di-
rectly from simple amide starting materials and accommodates
a wide variety of olefinic reaction partners. More fundamen-
tally, this work demonstrate that multisite PCET enables the
selective homolysis of strong anilide N-H bonds in the pres-
ence of a thiol with a much weaker S-H bond. Efforts to un-
derstand and generalize the basis of this surprising selectivity
are currently ongoing.
ASSOCIATED CONTENT
Supporting Information
Experimental procedures and characterization data. This material
AUTHOR INFORMATION
Corresponding Author
(13) Cheng, J. P.; Zhao, Y.Y. Tetrahedron, 1993, 49, 5267.
(14) (a) Frigerio, M.; Santagostino, M.; Sputore, S.; Palmisano, G. J.
Org. Chem. 1995, 60, 7272. (b) Shukla, V. G.; Salgaonkar, P. D.; Aka-
manchi, K. G. J. Org. Chem., 2003, 68, 5422.
(15) (a) Turro, C.; Chang, C. K.; Leroi, G. E.; Cukier, R. I.; Nocera, D.
G. J. Am. Chem. Soc. 1992, 114, 4013. (b) Kirby, J.; Roberts, J.; Nocera,
D. G. J. Am. Chem. Soc. 1997, 119, 9230. (c) Young, E. R.; Rosenthal, J.;
Hodgkiss, J. M.; Nocera, D. G. J. Am. Chem. Soc. 2009, 131, 7678. (d)
Sjodin, M.; Irebo, T.; Utas, J. E.; Lind, J.; Merenyi, G.; Akermark, B.;
Hammarstrom, L. J. Am. Chem. Soc. 2006, 128, 13076. (e) Markle, T. F.;
Mayer, J. M. Angew. Chem., Int. Ed. 2008, 47, 738.
(16) Chai, J. D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10,
6615.
(17) For the performance of this functional to describe hydrogen bond-
ing: DiLabio, G. A.; Johnson, E. R.; Otero-de-la-Rosa, A. Phys. Chem.
Chem. Phys. 2013, 15, 12821.
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
Financial support was provided by the NIH (R01 GM113105).
R.R.K is a fellow of the A. P. Sloan Foundation. We thank Istvan
Pelczer and Ken Conover for assistance with NMR experiments
and Phillip Jeffrey for X-ray crystallographic analysis.
REFERENCES
(1) (a) Gooßen, L. J.; Rauhaus, J. E.; Deng, G. Angew. Chem., Int. Ed.
2005, 44, 4042. (b) Wang, X.; Widenhoefer, R. A. Organometallics, 2004,
4
ACS Paragon Plus Environment