C O M M U N I C A T I O N S
Table 2. Suzuki-Miyaura Cross-Coupling on a Protein Surface
Table 3. Pd-Pyrimidine Catalyst in Aqueous Biaryl Synthesisa
a For more examples, TON/TOF analysis, and related control experi-
ments, see Supporting Information.
Acknowledgment. We thank the Rhodes Trust for funding and
the National Science Foundation for a Graduate Research Fellow-
ship (J.M.C.). Mitul Patel is acknowledged for technical assistance.
Supporting Information Available: Full experimental details and
compound characterization. This material is available free of charge
References
(1) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem. Int. Ed. 2005,
44, 4442–4489.
(2) (a) Geneˆt, J. P.; Savignac, M. J. Organomet. Chem. 1999, 576, 305–317.
(b) Shaughnessy, K. H. Eur. J. Org. Chem. 2006, 1827–1835.
(3) (a) Dibowski, H.; Schmidtchen, F. P. Angew. Chem. Int. Ed. 1998, 37,
476–478. (b) Bong, D. T.; Ghadiri, M. R. Org. Lett. 2001, 3, 2509–2511.
(c) Ojida, A.; Tsutsumi, H.; Kasagi, N.; Hamachi, I. Tetrahedron Lett. 2005,
46, 3301–3305. (d) Vilaro´, M.; Arsequell, G.; Valencia, G.; Ballesteros,
A.; Barluenga, J. Org. Lett. 2008, 10, 3243–3245.
(4) (a) Carrico, I. S. Ph.D. Thesis, etd-09082003-09110526, California Institute
of Technology (USA), 2004. (b) Kodama, K.; Fukuzawa, S.; Nakayama,
H.; Kigawa, T.; Sakamoto, K.; Yabuki, T.; Matsuda, N.; Shirouzu, M.;
Takio, K.; Tachibana, K.; Yokoyama, S. ChemBioChem 2006, 7, 134–
139. (c) Kodama, K.; Fukuzawa, S.; Nakayama, H.; Sakamoto, K.; Kigawa,
T.; Yabuki, T.; Matsuda, N.; Shirouzu, M.; Takio, K.; Yokoyama, S.;
Tachibana, K. ChemBioChem 2007, 8, 232–238. (d) Brustad, E.; Bushey,
M. L.; Lee, J. W.; Groff, D.; Liu, W.; Schultz, P. G. Angew. Chem. Int.
Ed. 2008, 47, 8220–8223.
(5) Hackenberger, C. P. R.; Schwarzer, D. Angew. Chem. Int. Ed. 2008, 47,
10030–10074.
(6) (a) Carrico, I. S. Chem. Soc. ReV. 2008, 37, 1423–1431. (b) Gamblin, D. P.;
van Kasteren, S. I.; Chalker, J. M.; Davis, B. G. FEBS J. 2008, 275, 1949–
1959. (c) Doores, K. J.; Gamblin, D. P.; Davis, B. G. Chem.sEur. J. 2006,
12, 656–665.
(7) See Supporting Information for a list of these amino acids.
(8) (a) Davis, B. G. Pure Appl. Chem. 2009, 81, 285–298. (b) Chalker, J. M.;
Bernardes, G. J. L.; Lin, Y. A.; Davis, B. G. Chem. Asian J. 2009, 4, 630–
640. (c) Lin, Y. A.; Chalker, J. M.; Davis, B. G. ChemBioChem 2009, 10,
959–969.
variety of hydrophobic aryl groups and lipids (entries 1-8). Finally,
cross-coupling was used as a route to a synthetic glycoprotein16
(Entry 9).
While our main goal was to validate Suzuki-Miyaura cross-
coupling in protein modification, we are not insensitive to general
synthesis. Indeed, the catalyst mediates efficient coupling of a
variety of aryliodides and arylbromides. Selected examples are
shown in Table 3. Microwave irradiation was used for rapid
coupling, though conventional heating suffices in most cases.
The catalyst is functionally tolerant, and phenols, anilines,
thiophenes, and pyridines were synthesized in excellent yield.
Hindered, ortho-substituted biaryls were also readily accessible
(Table 3). These congested couplings are a common testing
ground for catalyst activity.17 Cross-coupling with this catalyst
is also scalable. A 50-g coupling of 4-bromobenzoic acid and
phenylboronic acid was carried out in a beaker of water, open
to air, using only 0.01 mol % Pd. The product crystallizes directly
from the mixture and is isolated in excellent yield (97%).11 No
organic solvent is needed in the reaction or workup, an important
feature in the context of green chemistry.18
In conclusion, we have disclosed a convenient, easily pre-
pared11 catalyst for aqueous Suzuki-Miyaura cross-coupling.
The ligand is commercially available and far cheaper than water-
soluble phosphines typically used in aqueous cross-coupling. The
catalyst is mild enough to promote cross-coupling on proteins
and sufficiently active to mediate hindered biaryl coupling. The
cross-couplings reported on protein substrates are the first to
proceed to completion and vindicate extensive effort to geneti-
cally incorporate cross-coupling partners into proteins. Currently,
we are investigating the use of this catalyst in other Pd-mediated
transformations in water. We are also exploring the scope of
Suzuki-Miyaura cross-coupling in bioconjugation and applica-
tions in fluorogenic protein labeling. Progress to this end will
be reported in due course.
(9) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457–2483.
(10) Phosphine oxidation is a noted problem in bioconjugation. Laughlin, S. T.;
Bertozzi, C. R. Nat. Protoc. 2007, 2, 2930–2944.
(11) See Supporting Information for full details.
(12) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16,
4467–4470. (b) Li, J.-H.; Zhang, X.-D.; Xie, Y.-X. Eur. J. Org. Chem.
2005, 4256–4259.
(13) Formate was included to facilitate reduction of Pd(II) to Pd(0), but the
arylboronic acid is also capable of this reduction to the active catalyst.
(14) Stabile, M. R.; Lai, W. G.; DeSantis, G.; Gold, M.; Jones, J. B.; Mitchinson,
C.; Bott, R. R.; Graycar, T. P.; Liu, C.-C. Bioorg. Med. Chem. Lett. 1996,
6, 2501–2506.
(15) Hermanson, G. T. Bioconjugate Techniques, 2nd ed.; Academic Press: San
Diego, 2008.
(16) (a) Davis, B. G. Chem. ReV. 2002, 102, 579–601. (b) Gamblin, D. P.;
Scanlan, E. M.; Davis, B. G. Chem. ReV. 2008, 109, 131–163.
(17) (a) Moore, L. R.; Shaughnessy, K. H. Org. Lett. 2004, 6, 225–228. (b)
Anderson, K. W.; Buchwald, S. L. Angew. Chem. Int. Ed. 2005, 44, 6173–
6177. (c) Lipshutz, B. H.; Petersen, T. B.; Abela, A. R. Org. Lett. 2008,
10, 1333–1336.
(18) Sheldon, R. A. Green Chem. 2007, 9, 1273–1283.
JA907150M
9
J. AM. CHEM. SOC. VOL. 131, NO. 45, 2009 16347