pubs.acs.org/joc
reactions),1b derived from either β-dicarbonyl or R,β-unsa-
Asymmetric Direct Aldol Reactions of Acetoacetals
Catalyzed by a Simple Chiral Primary Amine
turated carbonyl compounds.5 Asymmetric direct ap-
proaches for these reactions are highly valuable in terms of
atom economy.6 However, such a reaction with high regio-,
diastereo-, and enantioselectivity remains unknown to date.
In addition, the range of vinylogous aldol donors has been
primarily limited to the ester-derived dienol ethers. Examples
with ketone or aldehyde counterparts are scarce and there is
no report on the use of β-keto aldehyde in asymmetric
vinylogous aldol reactions so far as we are aware.7
Sanzhong Luo,*,† Yupu Qiao,†
Long Zhang,‡ Jiuyuan Li,† Xin Li,† and Jin-Pei Cheng*,‡
†Beijing National Laboratory for Molecular Sciences
(BNLMS), CAS Key Laboratory of Molecular Recognition
and Function, Institute of Chemistry, Chinese Academy of
Sciences, Beijing, 100190, China, and ‡Department of
Chemistry and State Key Laboratory of Elemento-organic
Chemistry, Nankai University, Tianjin, 300071, China
SCHEME 1
Received October 2, 2009
The development of asymmetric direct aldol reactions of
β-keto aldehyde possesses a series of challenges. Besides
difficulties in controlling both diastereo- and enantioselec-
tivity, there are also issues such as chemoselectivity and
regioselectivity that requires differentiation of the two car-
bonyl groups and selective reaction on the γ-position rather
than the typical R-position as is usually observed in the
classical Knoevenagel reaction with similar substrates
(Scheme 1). Herein, we presented the first direct aldol reac-
tions of acetoacetals with high regio-, diastereo-, and en-
antioselectivity. This process was made possible by utilizing
the recently appearing chiral primary aminocatalysis,8 and
our previous finding that simple chiral primary amines such
as 1 (Table 1) were able to promote a range of direct aldol
reactions of functionalized aliphatic ketones beyond the
reach of typical secondary amines.9
An asymmetric direct aldol reaction of acetoacetals
is described. Under the catalysis of a simple chiral pri-
mary amine, the direct aldol reactions of acetoacetals
occur exclusively on the γ-position to give vinylogous-
type aldol products with high diastereo- and enantios-
electivity.
The asymmetric vinylogous aldol (AVA) reaction is a
versatile C-C bond forming reaction that has been widely
utilized in the synthesis of polyketides natural products.1 In
contrast to the well-developed asymmetric direct aldol reac-
tions,2 for which a number of asymmetric catalysts including
both chiral transition metal catalysts3 and organocatalysts4
have been developed, the success of the AVA reaction has
been largely limited to the use of preformed and activated
dienol ether donors (i.e., Mukaiyama vinylogous aldol
(5) For an example of direct aldol of 1,3-dicarbonyl compounds, see:
Rohr, K.; Mahrwald, R. Adv. Synth. Catal. 2008, 350, 2877.
(6) Trost, B. M. Science 1991, 254, 1471.
(7) For an example using R,β-unsaturate ketone aldol donor, see:
(a) Denmark, S. E.; Heemstra, J. R. J. Org. Chem. 2007, 72, 5668. For other
asymmetic direct vinylogous reactions, see: Michael addition: (b) Trost,
B. M.; Hitce, J. J. Am. Chem. Soc. 2009, 131, 4572. Mannich: (c) Liu, T.; Cui,
H.; Long, J.; Li, B.; Wu, Y.; Ding, L.; Chen, Y. J. Am. Chem. Soc. 2007, 129,
1878. Amination: (d) Bertelsen, T.; Marigo, M.; Brandes, S.; Diner, P.;
Jorgensen, K. A. J. Am. Chem. Soc. 2006, 128, 12973.
(8) For a review, see: (a) Xu, L.; Luo, J.; Lu, Y. Chem. Commun. 2009,
ꢀ
1807. For recent examples, see: (b) Cordova, A.; Zou, W.; Dziedzic, P.; Ibrahem,
I.; Reyes, E.; Xu, Y. Chem.;Eur. J. 2006, 12, 5383 and references cited therein.
(c) Huang, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2006, 128, 7170. (d) Tsogoeva,
S. B.; Wei, S. Chem. Commun. 2006, 1451. (e) Ramasastry, S. S. V.; Zhang, H.;
Tanaka, F.; Barbas, C. F. III J. Am. Chem. Soc. 2007, 129, 288. (f) Xu, X.-Y.;
Wang, Y.-Z.; Gong, L.-Z. Org. Lett. 2007, 9, 4247. (g) Xie, J.; Chen, W.; Li, R.;
Zeng, M.; Du, W.; Yue, L.; Chen, Y.; Wu, Y.; Zhu, J.; Deng, J. Angew. Chem., Int.
Ed. 2007, 46, 389. (h) Liu, J.; Yang, Z.; Wang, Z.; Wang, F.; Chen, X.; Liu, X.;
Feng, X.; Su, Z.; Hu, C. J. Am. Chem. Soc. 2008, 130, 5654. (i) Zhou, J.;
Wakchaure, V.; Kraft, P.; List, B. Angew. Chem., Int. Ed. 2008, 47, 7656.
(j) Nakayama, K.; Maruoka, K. J. Am. Chem. Soc. 2008, 130, 17666. (k) Lu, X.;
Liu, Y.; Sun, B.; Cindric, B.; Deng, L. J. Am. Chem. Soc. 2008, 130, 8134.
(9) (a) Luo, S.; Xu, H.; Li, J. Y.; Zhang, L.; Cheng, J.-P. J. Am. Chem. Soc.
2007, 129, 3074. (b) Luo, S.; Xu, H.; Zhang, L.; Li, J. Y.; Cheng, J.-P. Org.
Lett. 2008, 10, 653. (c) Luo, S.; Xu, H.; Chen, L.; Cheng, J.-P. Org. Lett. 2008,
10, 1775. (d) Li, J.; Luo, S.; Cheng, J.-P. J. Org. Chem. 2009, 74, 1747.
(1) For reviews, see: (a) Casiraghi, G.; Zanardi, F.; Appendino, G.;
Rassu, G. Chem. Rev. 2000, 100, 1929. (b) Denmark, S. E.; Heemstra, J. R.;
Beutner, G. L. Angew. Chem., Int. Ed. 2005, 44, 4682. (c) Schetter, B.;
Mahrwald, R. Angew. Chem., Int. Ed. 2006, 45, 7506. (d) Brodmann, T.;
Lorenz, M.; Schackel, R.; Simsek, S.; Kalesse, M. Synlett 2009, 174.
(2) (a) Mahrwald, R., Ed. Modern aldol reactions; Wiley-VCH: Weinheim,
Germany, 2004. (b) Geary, L. M.; Hultin, P. G. Tetrahedron: Asymmetry 2009,
20, 131.
(3) (a) Yamada, Y. M. A.; Yoshikawa, N.; Sasai, H.; Shibasaki, M.
Angew. Chem., Int. Ed. 1997, 36, 1871. (b) Trost, B. M.; Ito, H. J. Am. Chem.
Soc. 2000, 122, 12993.
(4) (a) List, B.; Lerner, R. A.; Barbas, C. F. III J. Am. Chem. Soc. 2000,
122, 2395. (b) For a review, see: Mukherjee, S.; Yang, J. W.; Hoffman, S.;
List, B. Chem. Rev. 2007, 107, 5471.
DOI: 10.1021/jo9021259
r
Published on Web 11/02/2009
J. Org. Chem. 2009, 74, 9521–9523 9521
2009 American Chemical Society