Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
7075. (d) R. S. K. Lane and S. W. MageDnOniIs: ,10R.1S0C3V9Ai/edCwv9.AC,rtC2ic00le91O02n6,l4in2Ae,
11397. (e) R. S. K. Lane, R. Jones, R. W. Sinkeldam, Y. Tor and
S. W. Magennis, ChemPhysChem, 2014, 15, 867.
(a) V. Y. Postupalenko, O. M. Zamotaiev, V. V. Shvadchak, A.
V. Strizhak, V. G. Pivovarenko, A. S. Klymchenko and Y. Mély,
Bioconjugate Chem., 2013, 24, 1998. (b) M. Sholokh, O. M.
Zamotaiev, R. Das, V. Y. Postupalenko, L. Richert, D. Dujardin,
O. A. Zaporozhets, V. G. Pivarenko, A. S. Klymenchenko and Y.
Mély, J. Phys. Chem. B, 2015, 119, 2585.
In summary, a new class of conformationally rigid, unnatural -
amino acid has been synthesized using a highly regioselective
olefination reaction to introduce side-chain diversity, followed by a
one-pot condensation/aza-Michael reaction and carbonylation
process to form the key pyrazoloquinazoline ring system. Although
containing relatively small side-chains, these compounds were found
to be strongly fluorescent with high quantum yields (42–56%). The
potential of amino acid 4e as a sensitive bio-imaging tool was
demonstrated with successful excitation of this compound at 700 nm
using two-photon spectroscopy. Furthermore, amino acid 4e was
efficiently incorporated into a biologically relevant peptide as part of
a SPPS process. Based on the exciting optical properties of this new
class of -amino acid, current work is investigating the introduction
of these minimally invasive compounds into other biologically
relevant peptides for in vitro and in vivo spectroscopic and
microscopic applications.
9
10 L. Mendive-Tapia, C. Zhao, A. R. Akram, S. Preciado, F.
Alberico, M. Lee, A. Serrels, N. Kielland, N. D. Read, R. Lavilla
and M. Vendrell, Nat. Commun., 2016, 7, 10940.
11 L. Gilfillan, R. Artschwager, A. H. Harkiss, R. M. J. Liskamp and
A. Sutherland, Org. Biomol. Chem., 2015, 13, 4514.
12 (a) M. Nepraš, N. Almonasy, F. Bureš, J. Kulhánek, M. Dvorák
and M. Michl, Dyes Pigm., 2011, 91, 466. (b) M. S. Michie, R.
Götz, C. Franke, M. Bowler, N. Kumari, V. Magidson, M.
Levitus, J. Loncarek, M. Sauer and M. J. Schnermann, J. Am.
Chem. Soc., 2017, 139, 12406. (c) J. C. Anderson, C.-H. Chang,
A. P. Jathoul and A. J. Syed, Tetrahedron, 2019, 75, 347.
13 D. E. Rudisill and J. P. Whitten, Synthesis, 1994, 851.
14 (a) L. S. Fowler, D. Ellis and A. Sutherland, Org. Biomol. Chem.,
2009, 7, 4309. (b) L. S. Fowler, L. H. Thomas, D. Ellis and A.
Sutherland, Chem. Commun., 2011, 47, 6569.
Conflicts of interest
There are no conflicts to declare.
15 F. Gosselin and W. D. Lubell, J. Org. Chem., 1998, 63, 7463.
16 F. Varano, D. Catarzi, V. Colotta, G. Filacchioni, A. Galli, C.
Costagli and V. Carlà, J. Med. Chem., 2002, 45, 1035.
17 The absorption and emission spectra for each amino acid are
presented in the Supporting Information.
18 (a) I. B. Berlman, J. Phys. Chem., 1970, 74, 3085. (b) N. I.
Nijegorodov and W. S. Downey, J. Phys. Chem., 1994, 98,
5639.
19 It should be noted that while excitation of the absorption
band at longest wavelength gave the most intense emission
spectra for most of the amino acids, this was not the case for
4b. Excitation of the peak at 279 nm gave the most intense
fluorescence and highest brightness value (Table 1).
20 V. A. Galievsky, S. I. Druzhinin, A. Demeter, S. A. Kovalenko, T.
Senyushkina, P. Mayer and K. A. Zachariasse, J. Phys. Chem. A,
2011, 115, 10823.
21 S. R. Meech and D. Phillips, J. Chem. Soc., Faraday Trans. 2,
1987, 83, 1941.
22 P. Sarder, D. Maji and S. Achilefu, Bioconjugate Chem., 2015,
26, 963.
23 S. Achelle, I. Nouira, B. Pfaffinger, Y. Ramondenc, N. Plé and J.
Rodríguez-López, J. Org. Chem., 2009, 74, 3711.
24 J. R. Lakowicz, Principles of Fluorescence Spectroscopy,
Springer, New York, 2006.
Acknowledgements
Financial support from EPSRC (studentships to J.D.B., EP/N509176/1
and A.H.H., EP/K503058/1), University of Glasgow (studentship to
D.N.) and GlaxoSmithKline is gratefully acknowledged.
Notes and references
1
For some recent reviews, see: (a) L.-Y. Niu, Y.-Z. Chen, H.-R.
Zheng, L.-Z. Wu, C.-H. Tung and Q.-Z. Yang, Chem. Soc. Rev.,
2015, 44, 6143. (b) A. B. Chinen, C. M. Guan, J. R. Ferrer, S. N.
Barnaby, T. J. Merkel and C. A. Mirkin, Chem. Rev., 2015, 115,
10530. (c) X. Chen, F. Wang, J. Y. Hyun, T. Wei, J. Qiang, X. Ren,
I. Shin and J. Yoon, Chem. Soc. Rev., 2016, 45, 2976.
2
3
4
(a) R. Y. Tsien, Annu. Rev. Biochem., 1998, 67, 509. (b) R. Heim,
A. B. Cubitt and R. Y. Tsien, Nature, 1995, 373, 663.
R. W. Sinkeldam, N. J. Greco and Y. Tor, Chem. Rev., 2010, 110,
2579 and references therein.
For recent reviews, see: (a) A. T. Krueger and B. Imperiali,
ChemBioChem., 2013, 14, 788. (b) R. Kubota and I. Hamachi,
Chem. Soc. Rev., 2015, 44, 4454. (c) A. H. Harkiss and A.
Sutherland, A. Org. Biomol. Chem., 2016, 14, 8911.
For examples, see: (a) A. Chatterjee, H. Xiao, P.-Y. Yang, G.
Soundararajan and P. G. Shultz, Angew. Chem. Int. Ed., 2013,
52, 5106. (b) S. Chen, N. E. Fahmi, L. Wang, C. Bhattacharya,
S. J. Benkovic and S. M. Hecht, J. Am. Chem. Soc., 2013, 135,
12924. (c) L. C. Speight, A. K. Muthusamy, J. M. Goldberg, J. B.
Warner, R. F. Wissner, T. S. Willi, B. F. Woodman, R. A. Mehl
and E. J. Petersson, J. Am. Chem. Soc., 2013, 135, 18806.
For recent examples, see: (a) P. Cheruku, J.-H. Huang, H.-J.
Yen, R. S. Iyer, K. D. Rector, J. S. Martinez and H.-L. Wang,
Chem. Sci., 2015, 6, 1150. (b) M. R. Hilaire, I. A. Ahmed, C.-W.
Lin, H. Jo, W. F. DeGrado and F. Gai, PNAS, 2017, 114, 6005.
(c) M. Arribat, E. Rémond, S. Clément, A. Van Der Lee and F.
Cavelier, J. Am. Chem. Soc., 2018, 140, 1028. (d) A. H. Harkiss,
J. D. Bell, A. Knuhtsen, A. G. Jamieson and A. Sutherland, J.
Org. Chem., 2019, 84, 2879.
5
25 (a) D. Nobis, R. S. Fisher, M. Simmermacher, P. A. Hopkins, Y.
Tor, A. C. Jones and S. W. Magennis, J. Phys. Chem. Lett., 2019,
10, 5008. (b) R. S. Fisher, D. Nobis, A. F. Füchtbauer, M. Bood,
M. Grøtli, L. M. Wilhelmsson, A. C. Jones and S. W. Magennis,
Phys. Chem. Chem. Phys., 2018, 20, 28487.
26 (a) J. A. Downs and S. P. Jackson, Nat. Rev. Mol. Cell. Biol.,
2004, 5, 367. (b) J. A. Gomez, J. Chen, J. Ngo, D. Hajkova, I.-J.
Yeh, V. Gama, M. Miyagi and S. Matsuyama, Pharmaceuticals,
2010, 3, 3594.
6
27 W. Li and B. Yan, J. Org. Chem., 1998, 63, 4092.
28 HCTU:
O-(1-H-6-Chlorobenzotriazole-1-yl)-1,1,3,3-
tetramethyluronium hexafluorophosphate.
7
8
A. Diaspro, G. Chirico and M. Collini, Q. Rev. Biophys., 2005,
38, 97.
(a) R. Yuste and W. Denk, Nature, 1995, 375, 682. (b) C. Xu, W.
Zipfel, J. B. Shear, R. M. Williams and W. W. Webb, PNAS,
1996, 93, 10763. (c) W. R. Zipfel, R. M. Williams, R. Christie, A.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins