C O M M U N I C A T I O N S
Figure 1. B3LYP/6-31G(d) optimized geometry of 2d•Cu(NTf2)2-3a (left) and proposed transition-state assembly (right). Hydrogen atoms, except for
protons of sulfonamido groups, are omitted for clarity.
(6) See the Supporting Information for details.
Acknowledgment. Financial support for this project was
provided by MEXT.KAKENHI (20245022), the Toray Science
(7) For reviews of chiral bis(oxazoline) ligands, see: (a) Rasappan, R.;
Laventine, D.; Reiser, O. Coord. Chem. ReV. 2008, 252, 702. (b) Desimoni,
G.; Faita, G.; Jørgensen, K. A. Chem. ReV. 2006, 106, 3561. (c) Johnson,
J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325. (d) Ghosh, A. K.;
Mathivanan, P.; Cappiello, J. Tetrahedron: Asymmetry 1998, 9, 1.
(8) Bis(oxazoline)-based ligands bearing additional Lewis basic sites have been
reported. Bis(oxazolinyl)pyridines (pybox): (a) Desimoni, G.; Faita, G.;
Quadrelli, P. Chem. ReV. 2003, 103, 3119. Tris(oxazoline)s: (b) Zhou, J.;
Tang, Y. J. Am. Chem. Soc. 2002, 124, 9030. (c) Foltz, Stecker, B.; Marconi,
G.; Bellemin-Laponnaz, S.; Wadepohl, H.; Gade, L. H. Chem. Commun.
2005, 5115. Other tridentate ligands: (d) Rasappan, R.; Hager, M.; Gissibl,
A.; Reiser, O. Org. Lett. 2006, 8, 6099. The additional Lewis basic sites
for the interaction with an additional metal cation to form bimetallic
catalysts: (e) Schinnerl, M.; Seitz, M.; Kaiser, A.; Reiser, O. Org. Lett.
2001, 3, 4259.
(9) Bis(oxazoline)-based ligands bearing additional Brønsted acid sites have
also been reported. The additional Brønsted acid sites interacted with a
substrate to control the selectivity: (a) Matsumoto, K.; Jitsukawa, K.;
Masuda, H. Tetrahedron Lett. 2005, 46, 5687. (b) Schinnerl, M.; Bo¨hm,
C; Seitz, M.; Reiser, O. Tetrahedron: Asymmetry 2003, 14, 765.
(10) Ligands 2 were prepared from L-threonine methyl ester using molybde-
num(VI) oxide catalyzed dehydrative cyclization as a key reaction. See
the Supporting Information for details. (a) Sakakura, A.; Kondo, R.;
Umemura, S.; Ishihara, K. Tetrahedron 2009, 65, 2102. (b) Sakakura, A.;
Umemura, S.; Ishihara, K. Chem. Commun. 2008, 3561. (c) Sakakura, A.;
Kondo, R.; Umemura, S.; Ishihara, K. AdV. Synth. Catal. 2007, 349, 1641.
(d) Sakakura, A.; Umemura, S.; Kondo, R.; Ishihara, K. AdV. Synth. Catal.
2007, 349, 551. (e) Sakakura, A.; Kondo, R.; Ishihara, K. Org. Lett. 2005,
7, 1971.
Foundation, the Global COE Program of MEXT, DAIKO FOUN-
DATION, JSPS Research Fellowships for Young Scientists (R.K.),
and the joint research program of the EcoTopia Science Institute,
Nagoya University. Calculations were performed at the Research
Center for Computational Science (RCCS), Okazaki Research
Facilities, National Institutes of Natural Science (NINS).
Supporting Information Available: Experimental procedures and
full characterization of new compounds. This material is available free
References
(1) For reviews, see: (a) Reymond, S.; Cossy, J. Chem. ReV. 2008, 108, 5359.
(b) Stanley, L. M.; Sibi, M. P. In Acid Catalysis in Modern Organic
Synthesis; Yamamoto, H., Ishihara, K., Eds.; Wiley-VCH: Weinhein, 2008;
Vol. 2, pp 903-985. (c) Corey, E. J. Angew. Chem., Int. Ed. 2002, 41,
1650. (d) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogian-
nakis, G. Angew. Chem., Int. Ed. 2002, 41, 1668.
(2) For selected reports on Lewis acid catalyzed asymmetric DA reactions with
acrylimides, see: (a) Sudo, Y.; Shirasaki, D.; Harada, S.; Nishida, A. J. Am.
Chem. Soc. 2008, 130, 12588. (b) Sibi, M. P.; Manyem, S.; Palencia, H.
J. Am. Chem. Soc. 2006, 128, 13660. (c) Sibi, M. P.; Zhang, R.; Manyem,
S. J. Am. Chem. Soc. 2003, 125, 9306. (d) Owens, T. D.; Souers, A. J.;
Ellman, J. A. J. Org. Chem. 2003, 68, 3. (e) Evans, D. A.; Barnes, D. M.;
Johnson, J. S.; Lectka, T.; von Matt, P.; Miller, S. J.; Murry, J. A.; Norcross,
R. D.; Shaughnessy, E. A.; Campos, K. R. J. Am. Chem. Soc. 1999, 121,
7582. (f) Kobayashi, S.; Hachiya, I.; Ishitani, H.; Arai, M. Tetrahedron
Lett. 1993, 34, 4535. (g) Corey, E. J.; Ishihara, K. Tetrahedron Lett. 1992,
33, 6807. (h) Corey, E. J.; Imwinkelried, R.; Pikul, S.; Xiang, Y. B. J. Am.
Chem. Soc. 1989, 111, 5493. (i) Narasaka, K.; Inoue, M.; Okada, N. Chem.
Lett. 1986, 1109.
(3) In our study, the use of a Cu(SbF6)2 complex sometimes caused polym-
erization of CP probably due to a strong Brønsted acid generated by the
decomposition of the catalyst.
(4) (a) Ishihara, K.; Fushimi, M. J. Am. Chem. Soc. 2008, 130, 7532. (b)
Ishihara, K.; Fushimi, M.; Akakura, M. Acc. Chem. Res. 2007, 63, 1049.
(c) Ishihara, K.; Fushimi, M. Org. Lett. 2006, 8, 1921.
(5) For a review of Lewis base catalysis, see: Denmark, S. E.; Beutner, G. L.
Angew. Chem., Int. Ed. 2008, 47, 1560.
(11) Theoretical calculation of the geometry optimization of 2c•Cu(NTf2)2 did
not give a local minimum structure, because the counteranions were not
caught by 2c and completely liberated.
(12) (a) Johannsen, M.; Jørgensen, K. A. J. Chem. Soc., Perkin Trans. 2 1997,
1183. (b) Evans and coworkers reported that the use of MeNO2 slightly
decreased the reactivity and the enantioselectivity. Evans, D. A.; Miller,
S. J.; Lectka, T.; von Matt, P. J. Am. Chem. Soc. 1999, 121, 7559.
(13) Cu(II) complexes with t-Bu-bis(oxazoline) were almost inert, when the
reaction was conducted in the presence of H2O (20 mol %).12b In contrast,
Cu(II) complexes with 2d were water-tolerant. 2d•Cu(OTf)2 showed good
catalytic activity even in the presence of H2O (20 mol %). See the
Supporting Information for details.
(14) Cu(II)•3-aryl-L-alanine amide complexes4 showed low catalytic activities
for the reaction of CH and furan with 1-acryl-3,5-dimethylpyrazole.
(15) Tilley, S. D.; Reber, K. P.; Sorensen, E. J. Org. Lett. 2009, 11, 701.
JA906098B
9
17764 J. AM. CHEM. SOC. VOL. 131, NO. 49, 2009