Table 2 Physical properties of polynitramines 4 and 5 comparing with PETN, NG and RDX
Compd
Tda/1C
Densityb/g cmꢀ3
DfH1298c/kJ molꢀ1 (kJ gꢀ1
)
Pd/GPa
De/m sꢀ1
ISf/J
OPg (%)
4
5
183
1.778
1.753i
1.778
1.60
ꢀ60.3 (ꢀ0.193)
324.9 (1.450)
ꢀ502.8 (ꢀ1.590)
ꢀ351.5 (ꢀ1.548)
92.6 (0.42)
31.59
35.62
31.39
25.3
8657
8933
8564
7700
8977
6
20
2.9
0.2
7.4
41
43
61
63
43
183h
160
PETNj
NGk
RDXj
50–60
230
1.816
35.17
a
b
c
Thermal decomposition temperature under nitrogen gas (DSC, 10 1C minꢀ1). Gas pycnometer (25 1C). Heat of formation (using
83.68 kJ molꢀ1 for the enthalpy of sublimation for each compound; calculated via Gaussian 03). Calculated detonation pressure
e
(CHEETAH 5.0). Calculated detonation velocity (CHEETAH 5.0). Impact sensitivity (BAM Fallhammer). OP = oxygen percent. 5 has
d
f
g
h
i
j
melting point at 133 1C. Determined by X-ray crystallography (20 1C). PETN = pentaerythrityl tetranitrate, RDX = 1,3,5-trinitro-1,3,5-
triazacyclohexane, ref. 3c and 11. NG = nitroglycerine, ref. 11 and 12.
k
Safety precautions: while we have experienced no difficulties
with the shock instability of polyazide and polynitramino
compounds, manipulations must be carried out in a hood
behind a safety shield. Leather gloves must be worn.
The authors gratefully acknowledge the support of DTRA
(HDTRA1-07-1-0024), NSF (CHE-0315275), and ONR
(N00014-06-1-1032). We are grateful to Dr D. A. Parrish,
Naval Research Laboratory (NRL), for determining the
single-crystal X-ray structures.
3 (a) M. Gobel and T. M. Klapotke, Adv. Funct. Mater., 2009, 19,
¨ ¨
347; (b) Y. Huang, H. Gao, B. Twamley and J. M. Shreeve,
Chem.–Eur. J., 2009, 15, 917; (c) D. E. Chavez, M. A. Hiskey,
D. L. Naud and D. Parrish, Angew. Chem., Int. Ed., 2008, 47, 8307;
(d) W.-G. Liu, S. V. Zybin, S. Dasgupta, T. M. Klapotke and
¨
W. A. Goddard, J. Am. Chem. Soc., 2009, 131, 7490;
(e) T. M. Klapotke, P. Mayer, C. M. Sabate, J. M. Welch and
¨
C. M. Sabate and M. Rasp, Dalton Trans., 2009, 1825;
¨
N. Wiegand, Inorg. Chem., 2008, 47, 6014; (f) T. M. Klapotke,
(g) M. Gobel, B. H. Tchitchanov, J. S. Murray, P. Politzer and
¨
¨
T. M. Klapotke, Nat. Chem., 2009, 1, 229.
4 (a) P. Goede, N. Wingborg, H. Bergman and N. V. Latypov,
Propellants, Explos., Pyrotech., 2001, 26, 17; (b) C. Ye, H. Gao,
B. Twamley and J. M. Shreeve, New J. Chem., 2008, 32, 317;
(c) D. B. Lempert and I. N. Zyuzin, Propellants, Explos., Pyrotech.,
2007, 32, 360.
Notes and references
z Crystallographic data compound 4: C5H12N8O8, Mr = 312.23,
5 R. C. Brian and A. H. Lamberton, J. Chem. Soc., 1949, 1633.
6 W. E. Bachmann, W. J. Horton, E. L. Jenner, N. W. MacNaughton
and C. E. Maxwell III, J. Am. Chem. Soc., 1950, 72, 3132.
7 (a) R. S. Stepanov, A. M. Astachov and L. A. Kruglyakova, 29th
International Annual ICT-Conference, 1998, 128/1–128/7;
(b) A. M. Astachov, R. R. Stepanov, L. A. Kruglyakova and
Y. V. Kekin, 31th International Annual ICT-Conference, 2000,
ꢀ
tetragonal, I4, a = b = 9.6543(11) A, c = 6.3283(9) A, a = b =
g = 901, V = 589.83(13) A3, Z = 2, rcalcd = 1.758 g cmꢀ3, T = 293(2) K,
m = 0.163 mmꢀ1, F(000) = 324, R1 = 0.0256 for 610 observed
(I 4 2sI) reflections and 0.0258 for all 615 reflections (Rint = 0.0180),
goodness-of-fit = 1.113, 48 parameters. 5: C3H8N6O6, Mr = 224.15,
orthorhombic, Pnma,
c = 8.9932(9) A, a = b = g = 901, V = 849.26(15) A3, Z = 4,
calcd = 1.753 g mꢀ3, T = 293(2) K m = 0.166 mmꢀ1, F(000) = 464,
a = 6.7812(7) A, b = 13.9258(13) A,
¨
13/1–13/10; (c) Y. Lee, P. Goede, N. Latypov and H. Ostmark,
r
36th International Annual ICT-Conference, 2005, 124/1–124/9.
8 W. Hayes, H. M. Osborn, S. D. Osborne, R. A. Rastall and
B. Romagnoli, Tetrahedron, 2003, 59, 7983, the method of
hydrogenation of azide was modified. See ESIw.
R1 = 0.0354 for 808 observed (I 4 2sI) reflections and 0.0394 for
all 911 reflections (Rint = 0.0169), goodness-of-fit = 1.069, 76
parameters.
1 (a) Y.-H. Joo and J. M. Shreeve, Angew. Chem., Int. Ed., 2009, 48,
564; (b) Y.-H. Joo and J. M. Shreeve, Chem.–Eur. J., 2009, 15,
9 S. Berger, S. Braun and H.-O. Kalinowski, NMR-Spektroskopie
von Nichtmetallen, Band 2, 15N-NMR-Spektroskopie, Georg
Thieme Verlag, Stuttgart, New York, 1992, pp. 36.
3198; (c) J. Stierstorfer, K. R. Tarantik and T. M. Klapotke,
¨
Chem.–Eur. J., 2009, 14, 5775; (d) H. Gao, Y. Huang, C. Ye,
B. Twamley and J. M. Shreeve, Chem.–Eur. J., 2008, 14, 5596;
10 M. J. Frisch et al., GAUSSIAN 03 (Revision D.01), see ESIw.
11 (a) H. H. Klause, in Energetic Materials, ed. U. Teipel, VCH,
(e) T. M. Klapotke, J. Stierstorfer and A. U. Wallek, Chem.
Mater., 2008, 20, 4519; (f) H. Xue, H. Gao, B. Twamley and
J. M. Shreeve, Chem. Mater., 2007, 19, 1731.
2 (a) R. P. Singh, R. D. Verma, D. T. Meshri and J. M. Shreeve,
Angew. Chem., Int. Ed., 2006, 45, 3584; (b) G. Steinhauser and
Weinheim, 2005, p. 1; (b) R. Meyer, J. Kohler and A. Homburg, in
¨
¨
Explosives, Wiley-VCH, Weinheim, 2007.
12 T. M. Klapotke, A. Penger, S. Scheutzow and L. Vejs, Z. Anorg.
¨
Allg. Chem., 2008, 634, 2994.
13 S. Bastea, L. E. Fried, K. R. Glaesemann, W. M. Howard,
P. C. Souers and P. A. Vitello, CHEETAH 5.0 User’s Manual,
Lawrence Livermore National Laboratory, 2007.
T. M. Klapotke, Angew. Chem., Int. Ed., 2008, 47, 3330;
¨
(c) R. P. Singh, H. Gao, D. T. Meshri and J. M. Shreeve, in
High Energy Density Materials, ed. T. M. Klapotke, Springer,
subjected to a drop-hammer test using a 5 or 10 kg weight dropped.
(Insensitive 4 40 J; less sensitive Z 35 J; sensitive Z 4 J; very
sensitive r3 J).
¨
Berlin, Heidelberg, 2007, vol. 37; (d) T. M. Klapotke, in
¨
High Energy Density Materials, ed. T. M. Klapotke, Springer,
Berlin, Heidelberg, 2007, p. 85.
¨
ꢁc
This journal is The Royal Society of Chemistry 2010
144 | Chem. Commun., 2010, 46, 142–144