10.1002/chem.202102805
Chemistry - A European Journal
COMMUNICATION
Colman, J. Alcazar, T. Noël, Angew. Chem. Int. Ed. 2019, 58, 13030-
13034; Angew. Chem. 2019, 131, 13164-1318.
Guyon, K. P. P. Nguyen, A. Boussonniere, J. Mortier, A.-S. Castanet, Eur.
J. Org. Chem. 2020, 3829–3833.
[11] a) M. A. Ganiek, M. V. Ivanova, B. Martin, P. Knochel, Angew. Chem. Int.
Ed. 2018, 57, 17249-17253; Angew. Chem. 2018, 130, 17496-17500; b)
N. Weidmann, J. H. Harenberg, P. Knochel, Angew. Chem. Int. Ed. 2020,
59, 12321-12325; Angew. Chem. 2020, 132, 12419-12424; c) J. H.
Harenberg, N. Weidmann, K. Karaghiosoff, P. Knochel, Angew. Chem.
Int. Ed. 2021, 60, 731-735; Angew. Chem. 2021, 133, 742-746; d) B.
Heinz, D. Djukanovic, P. Filipponi, B. Martin, K. Karaghiosoff, P. Knochel,
Chem Sci. 2021, 12, 6143; e) J. H. Harenberg, N. Weidmann, A. J.
Wiegand, C. A. Hoefer, R. R. Annapureddy, P. Knochel, Angew. Chem.
Int. Ed. 2021, 60, 14296-14301; Angew. Chem. 2021, 133, 14416-14421.
[12] a) A. Nagaki, K. Sasatsuki, S. Ishiuchi, N. Miuchi, M. Takumi, J.-I.
Yoshida, Chem. Eur. J. 2019, 25, 4946-4950; b) S.-Y. Moon, S.-H. Jung,
U. B. Kim, W.-S. Kim, RSC Adv. 2015, 5, 79385-79390.
[20] For the effect of toluene or THF on the enolization reaction during the
addition of ArLi to amides, see Supporting Information (page SI16).
[22] a) D. A. Thaisrivongs, J. R. Naber, J. P. McMullen, Org. Process Res.
Dev. 2016, 20, 1997–2004; b) D. A. Thaisrivongs, J. R. Naber, N. J.
Rogus, G. Spencer, Org. Process Res. Dev. 2018, 22, 403–408.
[23] For the synthesis of [1.1.1]bicyclopentane derivatives using metalorganic
chemistry, see: a) J. Kanazawa, K. Maeda, M. Uchiyama, J. Am. Chem.
Soc. 2017, 139, 17791–17794; b) I. S. Makarov, C. E. Brocklehurst, K.
Karaghiosoff, G. Koch, P. Knochel, Angew. Chem. Int. Ed. 2017, 56,
12774–12777; Angew. Chem. 2017, 129, 12949–12953; c) K. Schwärzer,
H. Zipse, K. Karaghiosoff, P. Knochel, Angew. Chem. Int. Ed. 2020, 59,
20235–20241; Angew. Chem. 2020, 132, 20412–20418; d) M. Kondo, T.
Ichikawa, T. Shimokawa, Y. Nagashima, K. Miyamoto, M. Uchiyama,
Angew. Chem. Int. Ed. 2020, 59, 1970–1974; Angew. Chem. 2020, 132,
1986–1990.
[13] a) J. Wu, X. Yang, Z. He, X. Mao, T. A. Hatton, T. F. Jamison, Angew.
Chem. Int. Ed. 2014, 53, 8416-8420; Angew. Chem. 2014, 126, 8556-
8560; b) H. Seo, L. V. Nguyen, T. F. Jamison, Adv. Synth. Catal. 2018,
361, 247-261.
[24] S. Dilly, A. F. Fotso, N. Lejal, G. Zedda, M. Chebbo, F. Rahman, S.
Companys, H. C. Betrand, J. Vidic, M. Noiray, M.-C. Alessi, B. Tarus, S.
Quideau, B. Riteau, A. Slama-Schowk, J. Med. Chem. 2018, 61, 7202-
7217.
[14] V. D. Pinho, B. Gutmann, L. S. M. Miranda, R. O. M. A. de Souza, C. O.
Kappe, J. Org. Chem. 2014, 79, 1555−1562.
[15] a) B. Heinz, D. Djukanovic, M. A. Ganiek, B. Martin, B. Schenkel, P.
Knochel, Org. Lett. 2020, 22, 493-496, b) F. Lima, M. Meisenbach, B.
Schenkel, J. Sedelmeier, Org. Biomol. Chem. 2021, 19, 2420.
[16] a) Various N,N-dimethylamides were readily prepared in large scale by
treating the corresponding methyl or ethyl esters with commercially
available Me2NH•HCl and NaOMe in methanol. See Supporting
Information for a detailed procedure; pages SI18-19. b) We concentrated
our efforts on the atom economical dimethylamides, but control
experiments showed that N,N-diethylamides or N-morpholinoamides
were also suitable substrates for these acylations while ethyl esters gave
a significant amount of double addition, see Supporting Information
(page SI17).
[25] M. Amir, H. Kumar, S. A. Javed, Arch. Pharm. Chem. Life Sci. 2007, 340,
577-585.
[26] a) S. Pal, P. Bindu, P. R. Venna, P. K. Dubey, Lett. Org. Chem. 2007, 4,
292–295; b) K. Kanomata, Y. Toda, Y. Shibata, M. Yamanaka, S.
Tsuzuki, I. D. Gridnev, M. Terada, Chem. Sci. 2014, 5, 3515; c) T.
Verheyen, L. van Turnhout, J. K, Vandavasi, E. S. Isbrandt, W. M. De
Borggraeve, S. G. Newman, J. Am. Chem. Soc. 2019, 141, 6869–6874.
[27] W. L. Whipple, H. J. Reich, J. Org. Chem. 1991, 56, 2911-2912.
[28] For further screenings and optimizations of the continuous flow
procedures, see Supporting Information (pages SI7-15).
[17] For a list of (hetero)aryl bromides of type 8, (hetero)aryllithiums of type 2
and amides of type 1 and 6, see Supporting Information (pages SI4-5).
[18] a) D. S. Ziegler, K. Karaghiosoff, P. Knochel Angew. Chem. Int. Ed. 2018,
57, 6701−6704; Angew. Chem. 2018, 130, 6811-6815; b) M. Balkenhohl,
D. Ziegler, A. Desaintjean, L. J. Bole, A. R. Kennedy, E. Hevia, P.
Knochel, Angew. Chem. Int. Ed. 2019, 58, 12898-12902; Angew. Chem.
2019, 131, 13030-13034; c) A. Desaintjean, T. Haupt, L. J. Bole, N. R.
Judge, E. Hevia, P. Knochel, Angew. Chem. Int. Ed. 2020, 60, 1513-
1518; Angew. Chem. 2021, 133, 1536-1541; d) F. H. Lutter, L.
Grokenberger, L. A. Perego, D. Broggini, S. Lemaire, S. Wagschal, P.
Knochel, Nature Commun. 2020, 11, 1-8.
[19] a) Solvent Recovery Handbook (Ed.: I. M. Smallwood), Blackwell
Science Ltd., Oxford, 2002; b) M. Sassian, D. Panov, A. Tuulmets, Appl.
Organometal. Chem. 2002, 16, 525-529; c) L. Delhaye, A. Ceccato, P.
Jacobs, C. Köttgen, A. Merschaert, Org. Process Res. Dev. 2007, 11,
160; d) J. Garcia-Alvarez, E. Hevia, V. Capriati, Eur. J. Org. Chem. 2015,
31, 6779-6799.
[20]
For the preparation of various aryllithiums in toluene, see:
a) W. J. Trepka, R. J. J. Sonnenfeld, Organomet. Chem. 1969, 16, 317–
320; b) D. W. Slocum, D. Reed, F. Jackson, C. Friesen, J. Organomet.
Chem. 1996, 512, 265–267; c) D. W. Slocum, P. Dietzel, Tetrahedron
Lett. 1999, 40, 1823–1826; d) M. P. R. Spee, J. Boersma, M. D. Meijer,
M. Q. Slagt, G. van Koten, J. W. Geus, J. Org. Chem. 2001, 66, 1647–
1656, e) D. W. Slocum, A. Carroll, P. Dietzel, S. Eilerman, J. P. Culver,
B. McClure, S. Brown, R. W. Holman, Tetrahedron Lett. 2006, 47, 865–
868; f) D. W. Slocum, D. Kusmic, J. C. Raber, T. K. Reinscheld, P. E.
Whitley, Tetrahedron Lett. 2010, 51, 4793–4796; g) A. Hernan-Gomez,
E. Herd, E. Hevia, A. Kennedy, P. Knochel, K. Kozinowski, S. M.
Manolikakes R. E. Mulvey, C. Schnegelsberg, Angew. Chem. Int. Ed.
2014, 53, 2706–2710; Angew. Chem. 2014, 126, 2744-2748; h) Z. Zhou,
A. Wakamiya T. Kushida, S. Yamaguchi, J. Am. Chem. Soc. 2012, 134,
4529–4532; i) J. E. Borger, A. W. Ehlers, M. Lutz, J. C. Slootweg, K.
Lammertsma, Angew. Chem. Int. Ed. 2014, 53, 12836–12839, Angew.
Chem. 2014, 126, 13050-13053; J) H. Guyon, A. Boussonniere, A.-S.;
Castanet, J. Org. Chem. 2017, 82, 4949–4957; k) N. Ando, H. Soutome,
S. Yamaguchi, Chem. Sci. 2019, 10, 7816–7821; l) T. T. T. Nguyen, H.
5
This article is protected by copyright. All rights reserved.