6552
B. Tréguier et al. / Tetrahedron Letters 50 (2009) 6549–6552
see: (b) Ty, N.; Kaffy, J.; Arrault, A.; Thoret, S.; Pontikis, R.; Dubois, J.; Morin-
Allory, L.; Florent, J.-C. Bioorg. Med. Chem. Lett. 2009, 19, 1318–1322; (c) Ty, N.;
Dupeyre, G.; Chabot, G. G.; Seguin, J.; Tillequin, F.; Scherman, D.; Michel, S.;
Cachet, X. Bioorg. Med. Chem. Lett. 2008, 16, 7494–7503; (d) Lai, M.-J.; Kuo, C.-
Y.; Yeh, T.-K.; Hsieh, H.-P.; Chen, L.-T.; Pan, W.-Y.; Hsu, K.-Y.; Chang, J.-Y.; Liou,
J.-P. ChemMedChem 2009, 4, 588–593.
10). Pd/C or Pd(OH)2 however, showed moderate catalytic activi-
ties (entries 7 and 8) since 1a was formed in lower yields than
those obtained with Pd(OAc)2 or PdCl2(MeCN)2. Evaluation of li-
gands revealed that Xphos (L3) and CyJohnPhos (L1) have a similar
efficiency and are superior to all other choices (entries 11–13). Fi-
nally we examined the effect of the leaving group (LG) of the elec-
trophilic coupling partner. A comparative study revealed that the
reactivity of triflate 3a is superior to that of imidazolylsulfonate
3b (entry 14) and nonaflate 3c (entry 15) whereas the coupling
failed when using tosylate 3d (entry 16). Considering its high cat-
alytic activity Pd(OAc)2 was our choice for further experimenta-
tion. In summary, the best conditions were found to require: 2a
(1 equiv), 3a (1 equiv), Pd(OAc)2 (5 mol %), Xphos (10 mol %), tBuO-
Li (2 equiv), dioxane in a sealed tube at 90 °C for 3 h.14 It should be
noted that microwave heating is also effective for this reaction.
However, if the reaction time is reduced (ꢀ0.5 h),15 a slightly lower
yield (78%) was obtained.
After these optimization studies, we applied this catalytic sys-
tem for the coupling of various aryl triflates and polyoxygenated
tosylhydrazones 2 to assess the scope of the developed reaction
conditions (Table 2). First, 3,4,5-trimethoxyacetophenone N-tos-
ylhydrazone 2a was reacted with various aryl triflates 3 to afford
the corresponding 1,1-diarylethylenes 1a–c (entries 1–3). Running
the reaction from aryl triflate 3g bearing a para sp2-carbon-chlo-
rine bond, the coupling reaction gave selectively 1d in a 69% yield
(entry 4). Among these substrates, the coupling reaction worked
efficiently even in the case of alkaline sensitive tosylhydrazones
2b and 2c bearing silyloxy groups in good to excellent yields (en-
tries 5–8). Heteroaromatic triflates 3f–e also were coupled success-
fully with hydrazone 2a and provided the desired coupling
products 1i–k in a satisfactory yield (entries 9–11), despite the fact
that the reaction conditions with these heterocyclic substrates had
never been optimized.
5. (a) Nam, N. H. Curr. Med. Chem. 2003, 10, 1697–1722; (b) Odlo, K.; Hentzen, J.;
Fournier dit Chabert, J.; Ducki, S.; Gani, O. A. B. S. M.; Sylte, I.; Skrede, M.;
Flørenes, V. A.; Hansen, T. V. Bioorg. Med. Chem. 2008, 16, 4829–4838; (c)
Congiu, C.; Cocco, M. T.; Onnis, V. Bioorg. Med. Chem. Lett. 2008, 18, 989–993;
(d) Xue, N.; Yang, X.; Wu, R.; Chen, J.; He, Q.; Yang, B.; Lu, X.; Hu, Y. Bioorg. Med.
Chem. 2008, 16, 2550–2557; (e) Zhang, Q.; Peng, Y.; Wang, X. I.; Keenan, S. M.;
Arora, S.; Welsh, W. J. J. Med. Chem. 2007, 50, 749–754.
6. (a) Hamze, A.; Veau, D.; Provot, O.; Brion, J.-D.; Alami, M. J. Org. Chem. 2009, 74,
1337–1340; (b) Liron, F.; Gervais, M.; Peyrat, J.-F.; Alami, M.; Brion, J.-D.
Tetrahedron Lett. 2003, 44, 2789–2794.
7. For some recent preparations of 1,1-diarylethylenes see: (a) Bhilare, S. V.;
Darvatkar, N. B.; Deorukhkar, A. R.; Raut, D. G.; Trivedi, G. K.; Salunkhe, M. M.
Tetrahedron Lett. 2009, 50, 893–896; (b) Yadav, J. S.; Reddy, B. V. S.; Sengupta,
S.; Biswas, S. K. Synthesis 2009, 1301–1304; (c) Sabarre, A.; Love, J. Org. Lett.
2008, 10, 3941–3944; (d) Yoshida, K.; Shishikura, Y.; Takahashi, H.; Imamoto, T.
Org. Lett. 2008, 10, 2777–2780; (e) Yuan, D.-Y.; Tu, Y.-Q.; Fan, C.-A. J. Org. Chem.
2008, 73, 7797–7799; (f) Li, J.-H.; Li, J.-L.; Xie, Y.-X. Synthesis 2007, 984–988; (g)
Buettner, M. W.; Naetscher, J. B.; Burschka, C.; Tacke, R. Organometallics 2007,
26, 4835–4838; (h) Hansen, A. L.; Ebran, J. P.; Gogsig, T. M.; Skrydstrup, T. Chem.
Commun. 2006, 4137–4139; (i) Caldwell, S. T.; Quin, C.; Edge, R.; Hartley, R. C.
Org. Lett. 2007, 9, 3499–3502.
8. (a) Provot, O.; Giraud, A.; Peyrat, J.-F.; Alami, M.; Brion, J.-D. Tetrahedron Lett.
2005, 46, 8547–8550; (b) Mousset, C.; Giraud, A.; Provot, O.; Hamze, A.; Bignon,
J.; Liu, J. M.; Thoret, S.; Dubois, J.; Brion, J.-D.; Alami, M. Bioorg. Med. Chem. Lett.
2008, 18, 3266–3271; (c) Mousset, C.; Provot, O.; Hamze, A.; Bignon, J.; Brion, J.-
D.; Alami, M. Tetrahedron 2008, 64, 4287–4294; (d) Giraud, A.; Provot, O.;
Hamze, A.; Brion, J.-D.; Alami, M. Tetrahedron Lett. 2008, 49, 1107–1110.
9. (a) Messaoudi, S.; Tréguier, B.; Hamze, A.; Provot, O.; Peyrat, J.-F.; Rodrigo De
Losada, J. R.; Liu, J.-M.; Bignon, J.; Wdzieczak-Bakala, J.; Thoret, S.; Dubois, J.;
Brion, J.-D.; Alami, M. J. Med. Chem. 2009, 52, 4538–4542; (b) Alami, M.; Brion,
J.-D.; Provot, O.; Peyrat, J.-F.; Messaoudi, S.; Hamze, A.; Giraud, A.; Bignon, J.;
Bakala, J.; Liu, J.-M. WO 122620 A1, 2008.
10. Patani, G. A.; LaVoie, E. J. Chem. Rev. 1996, 96, 3147–3176.
11. (a) Barluenga, J.; Moriel, P.; Valdés, C.; Aznar, F. Angew. Chem., Int. Ed. 2007, 46,
5587–5590; (b) Barluenga, J.; Tomas-Gamasa, M.; Moriel, P.; Aznar, F.; Valdés,
C. Chem. Eur. J. 2008, 14, 4792–4795.
12. Only 50% of the desired product was obtained when running the coupling
reaction with Pd2(dba)3 (1 mol %) and Xphos (2 mol %).
In conclusion, we have described an efficient and general meth-
od for cross coupling of different aryl triflates with polyoxygenated
hydrazones catalyzed by the combination of Pd(OAc)2 or PdCl2(MeCN)2
and Xphos ligand in the presence of tBuOLi as the base in a sealed
tube. In our opinion, this approach seems to be a suitable method
for the synthesis of other isocombretastatin A analogues. The design
of antitumor agents based on the 1,1-diaryethylene scaffold in
future structure–activity relationship studies is currently under-
way; the results of synthetic and biological studies will be reported
in due course.
13. For excellent reviews, see: (a) Ritter, K. Synthesis 1993, 735–762; (b)
Baraznenok, I. L.; Nenajdenko, V. G.; Balenkova, E. S. Tetrahedron 2000, 56,
3077–3119.
14. General procedure for the synthesis of 1. To a dioxane (6 mL) solution of N-
tosylhydrazone 2 (0.5 mmol), tBuOLi (1 mmol), Pd(OAc)2 (0.025 mmol), and X-
Phos (0.05 mmol) was added the aryl triflate 3 (0.5 mmol) in dioxane (2 mL).
The reaction vessel was sealed, and then heated at 90 °C for 3 h. The resulting
suspension was cooled to room temperature and filtered through a pad of
Celite eluting with AcOEt, and the inorganic salts were removed. The filtrate
was concentrated and purification of the residue by silica gel column
chromatography gave the desired product.
Diarylethylene 1a: Yield: 91%. Rf (cyclohexane/EtOAc: 6/4) = 0.60. IR (cmÀ1):
1579, 1507, 1454, 1411, 1346, 1299, 1233, 1174, 1122, 1030, 1004. 1H NMR: (d
ppm, CD3COCD3, 300 MHz): 3.75 (s, 3H, OCH3), 3.78 (s, 6H, OCH3), 3.82 (s, 3H,
OCH3), 5.34 (m, 2H, CH2), 6.60 (s, 2H), 6.92 (d, 2H, J = 8.7 Hz), 7.29 (d, 2H,
J = 8.7 Hz). 13C NMR (d ppm, 75 MHz, CD3COCD3): 55.5, 56.4 (2), 60.5, 106.8 (2),
112.7, 114.4 (2), 130.1 (2), 134.4, 138.2 (2), 150.6, 154.1 (2), 160.5.
Diarylethylene 1d: Yield: 69%. Rf (cyclohexane/EtOAc: 9/1) = 0.58. IR (cmÀ1):
1579, 1504, 1462, 1410, 1344, 1235, 1125, 1007. 1H NMR: (d ppm, CDCl3,
300 MHz): 3.73 (s, 6H, OCH3), 3.80 (s, 3H, OCH3), 5.34 (d, 2H, J = 1.0 Hz, CH2),
6.44 (s, 2H, CH), 7.22 (s, 4H, CH). 13C NMR (d ppm, 75 MHz, CDCl3): 56.1 (2),
60.9, 105.5 (2), 114.3, 128.4 (2), 129.6 (2), 133.7, 136.8, 137.8, 139.7, 149.0,
153.0 (2).
Acknowledgments
We thank the CNRS for support of this research and the ICSN for
a doctoral fellowship to B.T.
References and notes
Diarylethylene 1i: Yield: 75%. Rf (cyclohexane/EtOAc: 7/3) = 0.28. Mp: 143–
145 °C. IR (cmÀ1): 1719, 1574, 1508, 1453, 1411, 1350, 1221, 1177, 1124, 996.
1H NMR: (d ppm, CDCl3, 300 MHz): 3.82 (s, 6H), 3.89 (s, 3H), 5.54 (s, 1H), 5.56
(s, 1H), 6.42 (d, 1H, J = 9.5 Hz), 6.51 (s, 2H), 7.27 (dd, 1H, J = 1.6 Hz, J = 8.0 Hz),
7.35 (d, 1H, J = 1.5 Hz), 7.44 (d, 1H, J = 8.0 Hz), 7.71 (d, 1H, J = 9.5 Hz).13C NMR
(d ppm, 75 MHz, CDCl3): 56.0 (2), 60.8, 105.6 (2), 116.1, 116.2, 116.4, 118.2,
124.3, 127.4, 136.0, 138.1, 142.9, 145.1, 148.6, 153.0 (2), 153.9, 160.6.
15. The reaction was conducted according to the general method described above.
The reaction vessel was sealed, then placed in the Emrys Optimizer and
exposed to microwave irradiation according to the following specifications:
temperature: 120 °C; time: 30 min; fixed hold time: on; sample absorption:
high; pre-stirring: 60 s.
1. (a) Pettit, G. R.; Singh, S. B.; Niven, M. L.; Hamel, E.; Schmidt, J. M. J. Nat. Prod.
1987, 50, 119–131; (b) Pettit, G. R.; Singh, S. B.; Boyd, M. R.; Hamel, E.; Pettit, R.
K.; Schmidt, J. M.; Hogan, F. J. Med. Chem. 1995, 38, 1666–1672; (c) Pettit, G. R.;
Singh, S. B.; Hamel, E.; Lin, C. M.; Alberts, D. S.; Garcia-Kendall, D. Experientia
1989, 45, 209–211.
2. Pettit, G. R.; Toki, B.; Herald, D. L.; Boyd, M. R.; Hamel, E.; Pettit, R. K.; Chapuis,
G. C. J. Med. Chem. 1999, 42, 1459–1465.
3. (a) Cushman, M.; Nagarathnam, D.; Gopal, D.; Chakraborti, A. K.; Lin, C. M.;
Hamel, E. J. Med. Chem. 1991, 34, 2579–2588; (b) Cushman, M.; Nagarathnam,
D.; Gopal, D.; He, H.-M.; Lin, C. M.; Hamel, E. J. Med. Chem. 1992, 35, 2293–2306.
4. For a review, see: (a) Tron, G. C.; Pirali, T.; Sorba, G.; Pagliai, F.; Dusacca, S.;
Genazzani, A. A. J. Med. Chem. 2006, 49, 3033–3044; For some recent works,