10.1002/anie.201905971
Angewandte Chemie International Edition
COMMUNICATION
thiophenes were investigated by employing the spin density map
of a DFT calculation. Regarding the DFT results, radical species
were delocalized on thiophene rings and mainly distributed at the
C2 and C5 positions (Scheme 5). Interestingly, differences
between the population of C2 and C5 position would directly affect
the selectivity of para- and meta-substituted products. Since the
electricity of phenylacetylene at the terminal position would be
partially positive during the cyclization, the radical species
location of thiophene radical cation would pointedly affect the
formation of products.
(2017CFA010, 2017CFB152). Support from the Program of
Introducing Talents of Discipline to Universities of China (111
Program) is also appreciated.
Keywords: [4+2] annulation • photochemical • benzene ring •
thiophene • alkyne
[1]
a) S. Saito, Y. Yamamoto, Chem. Rev. 2000, 100, 2901; b) A. J. Inglis,
S. Sinnwell, T. P. Davis, C. Barner-Kowollik, M. H. Stenzel,
Macromolecules 2008, 41, 4120; c) D. Eisenberg, R. Shenhar, M.
Rabinovitz, Chem. Soc. Rev. 2010, 39, 2879; d) L. Xiao, Z. Chen, B. Qu,
J. Luo, S. Kong, Q. Gong, J. Kido, Adv. Mater. 2011, 23, 926; e) M.
Aldeghi, S. Malhotra, D. L. Selwood, A. W. E. Chan, Chem. Biol. Drug
Des. 2014, 83, 450.
[2]
a) M. Bandini, A. Melloni, A. Umani-Ronchi, Angew. Chem. Int. Ed. 2004,
43, 550; b) G. Sartori, R. Maggi, Chem. Rev. 2006, 106, 1077; c) T. B.
Poulsen, K. A. Jørgensen, Chem. Rev. 2008, 108, 2903; d) S.-L. You, Q.
Cai, M. Zeng, Chem. Soc. Rev. 2009, 38, 2190.
[3]
[4]
S. Saito, M. M. Salter, V. Gevorgyan, N. Tsuboya, K. Tando, Y.
Yamamoto, J. Am. Chem. Soc. 1996, 118, 3970.
a) V. Gevorgyan, L. G. Quan, Y. Yamamoto, J. Org. Chem. 1998, 63,
1244; b) N. Asao, H. Aikawa, Y. Yamamoto, J. Am. Chem. Soc. 2004,
126, 7458; c) N. Asao, H. Aikawa, J. Org. Chem. 2006, 71, 5249; d) N.
Asao, K. Sato, Org. Lett. 2006, 8, 5361; e) M. Rubina, M. Conley, V.
Gevorgyan, J. Am. Chem. Soc. 2006, 128, 5818; f) D. Yue, N. Della Cá,
R. C. Larock, J. Org. Chem. 2006, 71, 3381; g) O. V. Zatolochnaya, V.
Gevorgyan, Org. Lett. 2013, 15, 2562; h) F. Ling, Z. Li, C. Zheng, X. Liu,
C. Ma, J. Am. Chem. Soc. 2014, 136, 10914; i) C. Raji Reddy, U.
Dilipkumar, M. Damoder Reddy, Org. Lett. 2014, 16, 3792.
[5]
a) H. Cai, L. Xia, Y. R. Lee, Chem. Commun. 2016, 52, 7661; b) M.
Chang, C. Wu, J. Zheng, Y. Huang, Chem. Asian J. 2016, 11, 1512; c)
R. K. Saunthwal, K. M. Saini, M. Patel, A. K. Verma, Tetrahedron 2017,
73, 2415; d) C.-J. Zhou, H. Gao, S.-L. Huang, S.-S. Zhang, J.-Q. Wu, B.
Li, X. Jiang, H. Wang, ACS Catal. 2019, 9, 556.
Scheme 6. Proposed mechanism
[6]
[7]
a) Z. Shi, S. Ding, Y. Cui, N. Jiao, Angew. Chem. Int. Ed. 2009, 48, 7895;
b) S. K. Bhunia, A. Polley, R. Natarajan, R. Jana, Chem. Eur. J. 2015,
21, 16786.
We thus proposed a mechanism for this photocatalytic [4+2]
cyclization (Scheme 6). Firstly, thiophene (E1/2 red = +1.69 V vs
SCE) (Figure S2) can be oxidized by the exicited-state of
photocatalyst (E1/2 red [Acrꞏ−Mesꞏ+/Acrꞏ−Mes] = +2.06 V vs SCE)[16]
to generate the radical cation I. Subsequently, the generated
thiophene radical cation I reacted with alkyne 2 to produce
intermediate II. Then, the radical cyclized adduct II underwent
another single-electron transfer to produce III. The result of HRMS
analysis supported the possible formation of intermediate III
(Figure S3). Finally, intermediate III lost one sulfur atom to
produce product 3.[17]
a) R. L. Danheiser, R. G. Brisbois, J. J. Kowalczyk, R. F. Miller, J. Am.
Chem. Soc. 1990, 112, 3093; b) S. G. Dawande, V. Kanchupalli, J.
Kalepu, H. Chennamsetti, B. S. Lad, S. Katukojvala, Angew. Chem. Int.
Ed. 2014, 53, 4076; c) K. S. Rathore, M. Harode, S. Katukojvala, Org.
Biomol. Chem. 2014, 12, 8641; d) J.-Q. Wu, Z. Yang, S.-S. Zhang, C.-Y.
Jiang, Q. Li, Z.-S. Huang, H. Wang, ACS Catal. 2015, 5, 6453.
a) P. Turnbull, H. W. Moore, J. Org. Chem. 1995, 60, 644; b) X.-D. Han,
Y.-L. Zhao, J. Meng, C.-Q. Ren, Q. Liu, J. Org. Chem. 2012, 77, 5173;
c) T. Matsuda, N. Miura, Org. Biomol. Chem. 2013, 11, 3424.
a) K. H. Dötz, P. Tomuschat, Chem. Soc. Rev. 1999, 28, 187; b) A. de
Meijere, H. Schirmer, M. Duetsch, Angew. Chem. Int. Ed. 2000, 39, 3964;
c) T. A. Zeidan, S. V. Kovalenko, M. Manoharan, R. J. Clark, I. Ghiviriga,
I. V. Alabugin, J. Am. Chem. Soc. 2005, 127, 4270; d) A.-L. Auvinet, J.
P. A. Harrity, G. Hilt, J. Org. Chem. 2010, 75, 3893; e) J. D. Kirkham, P.
M. Delaney, G. J. Ellames, E. C. Row, J. P. A. Harrity, Chem. Commun.
2010, 46, 5154; f) K. Ozaki, W. Matsuoka, H. Ito, K. Itami, Org. Lett. 2017,
19, 1930.
[8]
[9]
Overall, a direct photoredox intermolecular desulfurative [4+2]
annulation of thiophenes with alkynes has been established. In
this visible-light induced [4+2] annulation, thiophenes as
commercially available four-carbon synthons could cooperate
with multifarious alkynes to accomplish the synthesis of
multisubstituted benzene rings under mild, oxidant- and metal-
free conditions. Moreover, extensive mechanistic studies provide
support for the mechanism and chemo-selectivity of this
transformation.
[10] a) S. L. Buchwald, Q. Fang, J. Org. Chem. 1989, 54, 2793; b) J. Roncali,
Chem. Rev. 1992, 92, 711; c) P. Kumaresan, S. Vegiraju, Y. Ezhumalai,
S. L. Yau, C. Kim, W.-H. Lee, M.-C. Chen, Polymers 2014, 6, 2645.
[11] D. B. Clapp, J. Am. Chem. Soc. 1939, 61, 2733.
[12] a) R. Helder, H. Wynberg, Tetrahedron Lett. 1972, 7, 605; b) H. J. Kuhn,
K. Gollnick, Chem. Ber. 1973, 106, 674; c) M. D'Auria, Tetrahedron Lett.
1995, 36, 6567.
[13] a) T. P. Yoon, M. A. Ischay, J. Du, Nat. Chem. 2010, 2, 527; b) D. P. Hari,
B. König, Angew. Chem. Int. Ed. 2013, 52, 4734; c) K. Ohkubo, A.
Fujimoto, S. Fukuzumi, J. Am. Chem. Soc. 2013, 135, 5368; d) N. A.
Romero, K. A. Margrey, N. E. Tay, D. A. Nicewicz, Science 2015, 349,
1326; e) E. B. Corcoran, M. T. Pirnot, S. Lin, S. D. Dreher, D. A. DiRocco,
I. W. Davies, S. L. Buchwald, D. W. C. MacMillan, Science 2016, 353,
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (21520102003, 21701127, 21390402) and
the Hubei Province Natural Science Foundation of China
This article is protected by copyright. All rights reserved.