Organometallics 2009, 28, 7001–7005 7001
DOI: 10.1021/om900827g
Versatile, Selective, and Switchable Coordination Modes of Pincer Click
Ligands
Elaine M. Schuster, Mark Botoshansky, and Mark Gandelman*
Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
Received September 24, 2009
Ligands possessing multiple complexation modes are an interesting class of compounds. Here we
report that our recently established pincer click ligands (PCLs), prepared by copper-catalyzed
cycloaddition of azides to alkynes, exhibit unique versatility in coordination ability. Nitrogens of the
triazole-based backbone can actively participate in metal ligation rather than being a spectator
backbone. Under selection of the reaction conditions these ligands can selectively acquire either bi- or
tridentate coordination upon reaction with a metal precursor. Both palladium and platinum
complexes with different coordination modes were prepared and fully characterized including
X-ray analysis. Moreover, the “rollover switch” of kinetically preferred bidentate complexes to the
thermodynamically controlled tridentate species is demonstrated.
Introduction
the metal center has generated extensive research into the use
of these complexes for catalysis, mechanistic studies, isolation
of elusive species, and materials science.5
Chelating ligands with multiple binding modes are an
interesting and versatile class of compounds that are of great
potential for catalytic applications, materials science, and
supramolecular chemistry.1,2 Such ligands with ambidentate
character can often be coordinated to a metal center in a
selective manner by modification of metal choice or its
oxidation state, ligand set, or reaction conditions. Particu-
larly attractive is the ability to selectively interconvert com-
plexes of different binding modes of the same ligand, which is
of great interest for the design of molecular switches, logic
gates, sensors, etc.3
Tridentate pincer-type ligands have found a variety of
valuable applications and, as such, represent a valuable target
for synthesis and studies.4 The pincer structure affords its
metal complex a high stability, which is widely attributed to the
protective, sheltered environment in which the metal is situ-
ated. The realization that pincer ligands offer both a unique,
highly protective environment for the coordinated metal center
and facility to fine-tune the steric and electronic properties of
We recently reported a novel combinatorial approach
toward the synthesis of triazole-based tridentate ligands.6
This methodology is based upon the Cu(I)-catalyzed [2þ3]
cycloaddition of azides and alkynes, decorated with donor
arms, to form triazole as the main tool for ligand assembly
(Scheme 1).7 Utilization of the triazole pattern for adaptable
ligand construction has received increasing interest in recent
years.8 In our methodology, this type of ligand construction
provided a triazole-based pincer frame with two donor arms
in 1,4-positions; the relatively acidic triazole hydrogen al-
lows for metal insertion to form tridentate complexes. The
initial library of aryl-substituted donors (P, N, and S) was
recently expanded to include bulky, electron-donating alkyl-
substituted phosphines, which further expanded the range of
ligands accessible by this route.9 We discovered significant
differences between the triazole-based pincer complexes as
(6) Schuster, E. M.; Botoshansky, M.; Gandelman, M. Angew.
Chem., Int. Ed. 2008, 47, 4555.
(7) (a) Meldal, A.; Tornoe, C. W. Chem. Rev. 2008, 108, 2952. (b)
Rostovtsev, V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem.,
e
*To whom correspondence should be addressed. E-mail: chmark@tx.
technion.ac.il.
Int. Ed. 2002, 41, 2596. (c) Tornoe, C. W.; Christensen, C.; Meldal, M.
e
(1) Burmeister, J. L. Coord. Chem. Rev. 1990, 105, 77.
(2) (a) Marzilli, L. G.; Summers, M. F.; Zangrando, E.; Bresciani-
Pahor, N.; Randaccio, L. J. Am. Chem. Soc. 1986, 108, 4830. (b) Chi,
K.-W.; Addicott, C.; Arif, A. M.; Stang, P. J. J. Am. Chem. Soc. 2004, 126,
16569. (c) Teo, P.; Koh, L. L.; Hor, T. S. A. Inorg. Chem. 2003, 42, 7290. (d)
Chi, K.-W.; Addicott, C.; Moon, M.-E.; Lee, H. J.; Yoon, S. C.; Stang, P. J. J.
Org. Chem. 2006, 71, 6662. (e) Zelikovich, L.; Libman, J.; Shanzer, A.
Nature 1995, 374, 790. (f) Kalny, D.; Elhabiri, M.; Moav, M.; Vaskevich, A.;
Rubinstein, I.; Shanzer, A.; Albrecht-Gary, A.-M. Chem. Commun. 2002,
1426.
(3) Balzani, V., Credi, A.; Venturi, M. Molecular Devices and Ma-
chines, 2nd ed.; Wiley-VCH: New York, 2008.
(4) van Koten, G.; Albrecht, M. Angew. Chem., Int. Ed. 2001, 40,
3750. (b) van der Boom, M. E.; Milstein, D. Chem. Rev. 2003, 103, 1759.
(5) (a) Singleton, J. T. Tetrahedron 2003, 59, 1837. (b) Morales-
Morales, D. Rev. Quim. Mex. 2004, 48, 338. (c) Vigalok, A.; Milstein, D.
Acc. Chem. Res. 2001, 34, 798.
J. Org. Chem. 2002, 67, 3057.
(8) (a) Liu, D.; Gao, W.; Dai, Q.; Zhang, X. Org. Lett. 2005, 7, 4907.
(b) Dai, Q.; Gao, W.; Liu, D.; Kapes, L. M.; Zhang, X. J. Org. Chem. 2006,
71, 3928. (c) Detz, R. D.; Heras, S.; de Gelder, R.; van Leeuwen, P. W. N. M.;
Hiemstra, H.; Reek, J. N. H.; van Maarseveen, J. H. Org. Lett. 2006, 8, 3227.
(d) Dolhem, F.; Johansson, M. J.; Antonsson, T.; Kann, N. J. Comb. Chem.
2007, 9, 477. (e) Detz, R. D.; Delville, M. M. E.; Hiemstra, H.; van
Maarseveen, J. H. Angew. Chem., Int. Ed. 2008, 47, 3777. (f) van Assema,
S. G. A.; Tazelaar, C. G. J.; Bas de Jong, G.; van Maarseveen, J. H.; Schakel,
M.; Lutz, M.; Spek, A. L.; Slootweg, J. C.; Lammertsma, K. Organometallics
2008, 27, 3210. (g) Rheingold, A. L.; Liable-Sands, L. M.; Trofimenko, S.
Angew. Chem., Int. Ed. 2000, 39, 3321. (h) Mindt, T. L.; Schweinsberg, C.;
Brans, L.; Hagenbach, A.; Abram, U.; Tourwe, D.; Garcia-Garayoa, E.;
Schibli, R. ChemMedChem 2009, 4, 529. (i) Janssen, M.; M€uller, C.; Vogt,
D. Adv. Synth. Catal. 2009, 351, 313.
(9) Schuster, E. M.; Nisnevich, G.; Botoshansky, M.; Gandelman, M.
Organometallics 2009, 28, 5025.
r
2009 American Chemical Society
Published on Web 11/13/2009
pubs.acs.org/Organometallics