pubs.acs.org/joc
of polyketides, we desired to take advantage of the capacity of
Improved Method for the Synthesis of β-Carbonyl
Silyl-1,3-Dithianes by the Double Conjugate Addition
of 1,3-Dithiol to Propargylic Carbonyl Compounds
olefin metathesis.5 Thus, allylation or a crotylation product
derived from bifunctional aldehyde 1 can be directly joined with
another polyketide motif without any functional group manip-
ulation. Also, it was envisioned that these processes could be
further streamlined by a tandem allylation (crotylation)-
epoxide opening via 1,4-Brook rearrangement, further improv-
ing the economy of polyketide synthesis (eq 1). Such a stream-
lined synthesis can also be envisaged for the corresponding
ketones 2 via an asymmetric aldol,6 Evans-Tishchenko reduc-
tion7 and anion relay chemistry (ARC)4 sequence (eq 2).
Sumit Mukherjee, Dimitra Kontokosta, Aditi Patil,
Sivakumar Rallapalli, and Daesung Lee*
Department of Chemistry, University of Illinois at Chicago,
845 West Taylor Street, Chicago, Illinois 60607
Received September 10, 2009
Base-mediated double conjugate addition of 1,3-propane
dithiol to various silylated propargylic aldehydes and
ketones allows for an efficient and scalable synthesis of
β-carbonyl silyl-1,3-dithianes.
The effectiveness of this concept was amply demonstrated in
our recent formal synthesis of cochleamycin A (Scheme 1),8
where triethylsilyldithiane aldehyde 1b was converted to the
β-hydroxy dithiane by Leighton’s asymmetric allylation.9 A
subsequent alkylation with bromoacetaldehyde dimethyl-
acetal under basic conditions in the presence of HMPA
afforded a product, which later takes part in a tandem enyne
RCM to afford an advanced intermediate in the formal
synthesis of cochleamycin A.
Polyketide-based natural products show a tremendous vari-
ety of biological activity and structural diversity, and thus the
development of new synthetic methods for their efficient
syntheses has been a highly pursued goal in organic chemistry.1
Most general and effective methods for the construction of
typical polyketide motifs include an aldol reaction between
enolates and aldehydes,2 asymmetric allylation and crotylation
of aldehydes,3 and opening of epoxides with 2-lithiodithianes.4
In our plan to develop a modular approach for the construction
(5) For reviews on alkene metathesis, see: (a) Grubbs, R. H. Tetrahedron
2004, 60, 7117. (b) Handbook of Metathesis; Grubbs, R. H., Ed.; Wiley-VCH:
Weinheim, Germany, 2003. (c) Schrock, R. R.; Hoveyda, A. H. Angew. Chem.,
Int. Ed. 2003, 42, 4592. (d) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001,
34, 18. (e) F€urstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012. (f) Grubbs, R. H.;
Chang, S. Tetrahedron 1998, 54, 4413. (g) Armstrong, S. K. J. Chem. Soc.,
Perkin Trans. 1 1998, 371. (h) Schusterand, M.; Blechert, S. Angew. Chem., Int.
Ed. Engl. 1997, 36, 2037. (i) Schmalz, H. G. Angew. Chem., Int. Ed. Engl. 1995,
34, 1833. (j) Grubbs, R. H.; Miller, S. J.; Fu, G. C. Acc. Chem. Res. 1995, 28, 446.
(6) (a) Evans, D. A.; Cee, V. J.; Siska, S. J. J. Am. Chem. Soc. 2006, 128,
(1) (a) Shang, S.; Tan, D. S. Curr. Opin. Chem. Biol. 2005, 9, 248. (b)
Shang, S.; Iwadare, H.; Macks, D. E.; Ambrosini, L. M.; Tan, D. S. Org.
Lett. 2007, 9, 1895.
(2) (a) Yeung, K.-S.; Paterson, I. Chem. Rev. 2005, 105, 4237. (b) Schetter,
B.; Mahrwald, R. Angew. Chem., Int. Ed. 2006, 45, 7506. (c) Brodmann, T.;
Lorenz, M.; Schackel, R.; Simsek, S.; Kalesse, M. Synlett 2009, 174.
(3) (a) Arefolov, A.; Panek, J. S. J. Am. Chem. Soc. 2005, 127, 5596. (b)
Wang, X.; Meng, W.; Perl, N. R.; Xu, Y.; Leighton, J. L. J. Am. Chem. Soc.
2005, 127, 12806. (c) Hu, T.; Takenaka, N.; Panek, J. S. J. Am. Chem. Soc.
2002, 124, 12806. (d) Zacuto, M. J.; O’Malley, S. J.; Leighton, J. L. J. Am.
Chem. Soc. 2002, 124, 7890. (e) de Lemos, E.; Poree, F.-H.; Bourin, A.;
Agouridas, E.; Lannou, M.-I.; Commercon, A.; Betzer, J.-F.; Pancrazi, A.;
Ardisson, J. Chem.;Eur. J. 2008, 14, 11092. (f) Herber, C.; Breit, B. Chem.;
Eur. J. 2006, 12, 6684. (g) Nicolaou, K. C.; Kim, D. W.; Baati, R. Angew.
Chem., Int. Ed. 2002, 41, 3701. (h) Bouzbouz, S.; Cossy, J. Org. Lett. 2003, 5,
^ ꢀ
9433. (b) Evans, D. A.; Cote, B.; Coleman, P. J.; Connell, B. T. J. Am. Chem.
Soc. 2003, 125, 10893. (c) Paterson, I.; Di Francesco, M. E.; Kuehn, T. Org.
^ ꢀ
Lett. 2003, 5, 599. (d) Evans, D. A.; Coleman, P. J.; Cote, B. J. Org. Chem.
1997, 62, 788. (e) Paterson, I.; Gibson, K. R.; Oballa, R. M. Tetrahedron Lett.
1996, 37, 8585. (f) Paterson, I.; Yeung, K. S.; Ward, R. A.; Smith, J. D.;
Cumming, J. G.; Lamboley, S. Tetrahedron 1995, 51, 9467. (g) Evans, D. A.;
Calter, M. A. Tetrahedron Lett. 1993, 34, 6871. (h) Duplantier, A. J.; Hantz,
M. H.; Roberts, J. C.; Short, R. P.; Somfai, P.; Masamune, S. Tetrahedron
Lett. 1989, 30, 7357. (i) Blanchette, M. A.; Malamas, M. S.; Nantz, M. H.;
Roberts, J. C.; Somfai, P.; Whritenour, D. C.; Masamune, S.; Kageyama,
M.; Tamura, T. J. Org. Chem. 1989, 54, 2817.
(7) Evans, D. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1990, 112, 6447.
(8) Mukherjee, S.; Lee, D. Org. Lett. 2009, 11, 2916.
(9) Kinnaird, J. W. A.; Ng, P. Y.; Kubota, K.; Wang, X; Leighton, J. L. J.
Am. Chem. Soc. 2002, 124, 7920.
ꢀ
3029. (i) Allais, F.; Cossy, J. Org. Lett. 2006, 8, 3655. (j) Ferrie, L.; Reymond,
S.; Capdevielle, P.; Cossy, J. Org. Lett. 2007, 9, 2461.
(4) (a) Smith, A. B. III; Xian, M. J. Am. Chem. Soc. 2006, 128, 66. (b)
Smith, A. B. III; Adams, C. M. Acc. Chem. Res. 2004, 37, 365. (c) Smith, A. B.
III; Boldi, A. M. J. Am. Chem. Soc. 1997, 119, 6925. (d) Smith, A. B. III;
Wuest, W. M. Chem. Commun. 2008, 45, 5883. (e) Smith, A. B. III; Kim, D.-
S. Org. Lett. 2007, 9, 3311. (f) Smith, A. B. III; Cox, J. M.; Furuichi, N.;
Kenesky, C. S.; Zheng, J.; Atasoylu, O.; Wuest, W. M. Org. Lett. 2008, 10,
5501.
9206 J. Org. Chem. 2009, 74, 9206–9209
Published on Web 10/30/2009
DOI: 10.1021/jo901950e
r
2009 American Chemical Society