stronger radical-scavenging activity compared to 2. The
intramolecular hydrogen bond O–HÁ Á ÁN between the amino
moiety in lysine and 14-OH in catechol was validated by a
DFT calculation of 3. Proton transfer from 14-OH to the
amino group, thereby displacing the hydrogen bonding to
+
OÁ Á ÁH–N, was also shown in the optimized geometry of 3ꢁ
.
Stabilization of the radical cation arising from this hydrogen
bond by the amino group of lysine results in the enhancement
of radical-scavenging activity. This study improves our
understanding of the radical-scavenging mechanism of
phenolic antioxidants, and contributes to the further
development of synthetic antioxidants with strong radical-
scavenging activities.
Fig. 5 DFT optimized structure of 3ꢁ+ calculated using the B3LYP/
6-31G* basis set.
Notes and references
1 S. H. Lee and I. A. Blair, Trends Cardiovasc. Med., 2001, 11,
148–155.
contrast, if the radical-scavenging mechanism proceeds via the
formation of 3(-H)ꢁ by a one-step hydrogen atom transfer
mechanism, no interaction between the amino group and
2 T. C. Squier, Exp. Gerontol., 2001, 36, 1539–1550.
3 H. Bartsch and J. Nair, Cancer Detect. Prev., 2004, 28, 385–391.
4 B. Su, X. Wang, A. Nunomura, P. I. Moreira, H. G. Lee, G. Perry,
M. A. Smith and X. Zhu, Curr. Alzheimer Res., 2008, 5, 525–532.
5 W. A. Pryor, Free Radic. Biol. Med., 2000, 28, 141–164.
6 H. E. Seifried, D. E. Anderson, E. I. Fisher and J. A. Milner,
J. Nutr. Biochem., 2007, 18, 567–579.
+
3(-H)ꢁ will occur. The structure of 3ꢁ was also optimized
using DFT calculations. As shown in Fig. 5, the optimized
geometry of 3ꢁ+ indicated that the proton of the 14-OH group
had been transferred to the amino group of the lysine and the
length of the resultant OÁ Á ÁH–N hydrogen bond was 1.68 A.
This intramolecular proton transfer displacing hydrogen
bonding into OÁ Á ÁH–N significantly contributes to the
stabilization of 3ꢁ+, resulting in an enhancement in the
radical-scavenging activity of 3 by the electron transfer
mechanism as depicted in Fig. 6.
7 H. Chen, A. Ma and S. Qi, Cardiovasc. Hematol. Agents Med.
Chem., 2008, 6, 20–43.
8 G. Aliev, M. E. Obrenovich, V. P. Reddy, J. C. Shenk,
P. I. Moreira, A. Nunomura, X. Zhu, M. A. Smith and
G. Perry, Mini-Rev. Med. Chem., 2008, 8, 1395–1406.
9 Z. Cheng, J. Ren, Y. Li, W. Chang and Z. Chen, Redox Rep., 2002,
7, 395–402.
10 J. V. Higdon and B. Frei, Crit. Rev. Food Sci. Nutr., 2003, 43,
89–143.
11 P. V. Babu and D. Liu, Curr. Med. Chem., 2008, 15, 1840–1850.
12 C. S. Yang, J. D. Lambert and S. Sang, Arch. Toxicol., 2009, 83,
11–21.
13 J. Castillo, O. Benavente-Garcia, J. Lorente, M. Alcaraz,
A. Redondo, A. Ortuno and J. A. Del Rio, J. Agric. Food Chem.,
2000, 48, 1738–1745.
14 A. Sekher Pannala, T. S. Chan, P. J. O’Brien and C. A. Rice-
Evans, Biochem. Biophys. Res. Commun., 2001, 282, 1161.
15 S. Mitani, A. Ouchi, E. Watanabe, Y. Kanesaki, S. Nagaoka and
K. Mukai, J. Agric. Food Chem., 2008, 56, 4406–4417.
16 K. Fukuhara, I. Nakanishi, H. Kansui, E. Sugiyama, M. Kimura,
T. Shimada, S. Urano, K. Yamaguchi and N. Miyata, J. Am.
Chem. Soc., 2002, 124, 5952–5953.
In conclusion, a planar catechin derivative incorporating a
lysine moiety was constructed, based on the concept that the
radical cation generated from the reaction between 3 and an
oxyl radical is stabilized by the base functionality of the lysine
side-chain, thereby enhancing radical-scavenging activities. By
observing the reaction with GOꢁ, 3 showed significantly
17 K. Fukuhara, I. Nakanishi, T. Shimada, K. Ohkubo, K. Miyazaki,
W. Hakamata, S. Urano, T. Ozawa, H. Okuda, N. Miyata,
N. Ikota and S. Fukuzumi, Chem. Res. Toxicol., 2003, 16, 81–86.
18 I. Nakanishi, K. Ohkubo, K. Miyazaki, W. Hakamata, S. Urano,
T. Ozawa, H. Okuda, S. Fukuzumi, N. Ikota and K. Fukuhara,
Chem. Res. Toxicol., 2004, 17, 26–31.
19 W. Hakamata, I. Nakanishi, Y. Masuda, T. Shimizu, H. Higuchi,
Y. Nakamura, S. Saito, S. Urano, T. Oku, T. Ozawa, N. Ikota,
N. Miyata, H. Okuda and K. Fukuhara, J. Am. Chem. Soc., 2006,
128, 6524–6525.
20 I. Nakanishi, T. Kawashima, K. Ohkubo, H. Kanazawa, K. Inami,
M. Mochizuki, K. Fukuhara, H. Okuda, T. Ozawa, S. Itoh,
S. Fukuzumi and N. Ikota, Org. Biomol. Chem., 2005, 3, 626–629.
21 I. Nakanishi, K. Miyazaki, T. Shimada, K. Ohkubo, S. Urano,
N. Ikota, T. Ozawa, S. Fukuzumi and K. Fukuhara, J. Phys.
Chem. A, 2002, 106, 11123–11126.
Fig. 6 Proposed radical-scavenging mechanism of 3.
ꢀc
This journal is The Royal Society of Chemistry 2009
6182 | Chem. Commun., 2009, 6180–6182