Organic Letters
Letter
Not Predict Cytotoxicity. J. Med. Chem. 2011, 54, 5059. (c) Huang,
W.-S.; Metcalf, C. A.; Sundaramoorthi, R.; Wang, Y.; Zou, D.;
Thomas, R. M.; Zhu, X.; Cai, L.; Wen, D.; Liu, S.; Romero, J.; Qi, J.;
Chen, I.; Banda, G.; Lentini, S. P.; Das, S.; Xu, Q.; Keats, J.; Wang, F.;
Wardwell, S.; Ning, Y.; Snodgrass, J. T.; Broudy, M. I.; Russian, K.;
Zhou, T.; Commodore, L.; Narasimhan, N. I.; Mohemmad, Q. K.;
Iuliucci, J.; Rivera, V. M.; Dalgarno, D. C.; Sawyer, T. K.; Clackson,
T.; Shakespeare, W. C. Discovery of 3-[2-(Imidazo[1,2-b]pyridazin-3-
yl)ethynyl]-4-methyl-N-{4-[(4-methylpiperazin-1-yl)methyl]-3-
(trifluoromethyl)phenyl}benzamide (AP24534), a Potent, Orally
Active Pan-Inhibitor of Breakpoint Cluster Region-Abelson (BCR-
ABL) Kinase Including the T315I Gatekeeper Mutant. J. Med. Chem.
2010, 53, 4701.
(6) (a) Hamada, T.; Ye, X.; Stahl, S. S. Copper-catalyzed aerobic
oxidative amidation of terminal alkynes: Efficient synthesis of
ynamides. J. Am. Chem. Soc. 2008, 130, 833. (b) Jouvin, K.;
Heimburger, J.; Evano, G. Click-alkynylation of N- and P-nucleophiles
by oxidative cross-coupling with alkynylcopper reagents: a general
synthesis of ynamides and alkynylphosphonates. Chem. Sci. 2012, 3,
756.
(7) (a) Frederick, M. O.; Mulder, J. A.; Tracey, M. R.; Hsung, R. P.;
Huang, J.; Kurtz, K. C. M.; Shen, L. C.; Douglas, C. J. A copper-
catalyzed C-N bond formation involving sp-hybridized carbons. A
direct entry to chiral ynamides via N-alkynylation of amides. J. Am.
Chem. Soc. 2003, 125, 2368. (b) Dunetz, J. R.; Danheiser, R. L.
Copper-mediated N-alkynylation of carbamates, ureas, and sulfona-
mides. A general method for the synthesis of ynamides. Org. Lett.
2003, 5, 4011. (c) Zhang, X.; Zhang, Y.; Huang, J.; Hsung, R. P.;
Kurtz, K. C. M.; Oppenheimer, J.; Petersen, M. E.; Sagamanova, I. K.;
Shen, L.; Tracey, M. R. Copper(II)-catalyzed amidations of alkynyl
bromides as a general synthesis of ynamides and Z-enamides. An
intramolecular amidation for the synthesis of macrocyclic ynamides. J.
Org. Chem. 2006, 71, 4170. (d) Yao, B.; Liang, Z.; Niu, T.; Zhang, Y.
Iron-Catalyzed Amidation of Alkynyl Bromides: A Facile Route for
the Preparation of Ynamides. J. Org. Chem. 2009, 74, 4630.
(8) (a) Coste, A.; Karthikeyan, G.; Couty, F.; Evano, G. Copper-
Mediated Coupling of 1,1-Dibromo-1-alkenes with Nitrogen
Nucleophiles: A General Method for the Synthesis of Ynamides13.
Angew. Chem., Int. Ed. 2009, 48, 4381. (b) Yang, Y.; Zhang, X.; Liang,
Y. Copper-catalyzed coupling of 1,2-dibromo-1-styrenes with
sulfonamides for the preparation of ynamides. Tetrahedron Lett.
2012, 53, 6557.
tually New Strategy for the Regiospecific Synthesis of Substituted
Indolines. Angew. Chem., Int. Ed. 1999, 38, 2426.
(13) (a) Bru
Tetrahedron 2006, 62, 3809. (b) Rodríguez, D.; Martínez-Esperon, M.
̈
ckner, D. Synthesis of ynamides from formamides.
́
́
F.; Castedo, L.; Saa, C. Synthesis of Disubstituted Ynamides from β,β-
Dichloroenamides and Electrophiles. Synlett 2007, 2007, 1963.
(c) Wang, X.-N.; Hsung, R. P.; Qi, R.; Fox, S. K.; Lv, M.-C. A
Highly Stereoselective Addition of Lithiated Ynamides to Ellman−
Davis Chiral N-tert-Butanesulfinyl Imines. Org. Lett. 2013, 15, 2514.
(d) Wang, X.-N.; Winston-McPherson, G. N.; Walton, M. C.; Zhang,
Y.; Hsung, R. P.; DeKorver, K. A. Synthesis of Cyclopentenimines
from N-Allyl Ynamides via a Tandem Aza-Claisen Rearrangement−
Carbocyclization Sequence. J. Org. Chem. 2013, 78, 6233. (e) Zhang,
P.; Cook, A. M.; Liu, Y.; Wolf, C. Copper(I)-Catalyzed Nucleophilic
Addition of Ynamides to Acyl Chlorides and Activated N-Hetero-
cycles. J. Org. Chem. 2014, 79, 4167. (f) Mansfield, S. J.; Campbell, C.
D.; Jones, M. W.; Anderson, E. A. A robust and modular synthesis of
ynamides. Chem. Commun. 2015, 51, 3316. (g) Gillie, A. D.; Jannapu
Reddy, R.; Davies, P. W. Efficient and Flexible Synthesis of Highly
Functionalised 4-Aminooxazoles by a Gold-Catalysed Intermolecular
Formal [3 + 2] Dipolar Cycloaddition. Adv. Synth. Catal. 2016, 358,
226. (h) Cook, A. M.; Wolf, C. Efficient Access to Multifunctional
Trifluoromethyl Alcohols through Base-Free Catalytic Asymmetric
C−C Bond Formation with Terminal Ynamides. Angew. Chem., Int.
Ed. 2016, 55, 2929. (i) Moskowitz, M.; Wolf, C. Catalytic
Enantioselective Ynamide Additions to Isatins: Concise Access to
Oxindole Alkaloids. Angew. Chem. 2019, 131, 3440.
(14) (a) Tracey, M. R.; Zhang, Y.; Frederick, M. O.; Mulder, J. A.;
Hsung, R. P. Terminal ynamide Sonogashira coupling. Org. Lett. 2004,
́
́
6, 2209. (b) Martínez-Esperon, M. F.; Rodríguez, D.; Castedo, L.; Saa,
C. Coupling and cycloaddition of ynamides: homo- and Negishi
coupling of tosylynamides and intramolecular [4 + 2] cycloaddition of
N-(o-ethynyl)phenyl ynamides and arylynamides. Tetrahedron 2006,
62, 3843. (c) Dooleweerdt, K.; Ruhland, T.; Skrydstrup, T.
Application of Ynamides in the Synthesis of 2-Amidoindoles. Org.
Lett. 2009, 11, 221.
(15) Cahiez, G.; Gager, O.; Buendia, J. Copper-Catalyzed Cross-
Coupling of Alkyl and Aryl Grignard Reagents with Alkynyl Halides.
Angew. Chem., Int. Ed. 2010, 49, 1278.
(17) Single crystal X-ray diffraction data were collected for 15
(18) Levin, A.; Basheer, A.; Marek, I. Regiodivergent Carbometa-
lation Reactions of Ynol Ether Derivatives. Synlett 2010, 2010, 329.
(19) Dohle, W.; Lindsay, D. M.; Knochel, P. Copper-Mediated
Cross-Coupling of Functionalized Arylmagnesium Reagents with
Functionalized Alkyl and Benzylic Halides. Org. Lett. 2001, 3, 2871.
(20) These experiments used predried solvents and freshly prepared
LiHMDS under an inert atomsphere. The direct use of commercial
reagents (anhydrous TBME, LiHMDS (1.0 M in TBME)) without
additional precautions gave 79% of 1a.
(9) (a) For other selected methods, see: Waldecker, B.; Kraft, F.;
Golz, C.; Alcarazo, M. 5-(Alkynyl)dibenzothiophenium Triflates:
Sulfur-Based Reagents for Electrophilic Alkynylation. Angew. Chem.,
Int. Ed. 2018, 57, 12538. (b) Tu, Y.; Zeng, X.; Wang, H.; Zhao, J. A
Robust One-Step Approach to Ynamides. Org. Lett. 2018, 20, 280.
(c) For a review and other methods prior to 2013, see: Evano, G.;
Jouvin, K.; Coste, A. General Amination Reactions for the Synthesis
of Ynamides. Synthesis 2012, 45, 17.
(21) (a) Kokhan, S. O.; Valter, Y. B.; Tymtsunik, A. V.; Komarov, I.
V.; Grygorenko, O. O. Bicyclo[1.1.1]pentane-Derived Building Blocks
for Click Chemistry. Eur. J. Org. Chem. 2017, 2017, 6450. (b) Hazra,
A.; Lee, M. T.; Chiu, J. F.; Lalic, G. Photoinduced Copper-Catalyzed
Coupling of Terminal Alkynes and Alkyl Iodides. Angew. Chem., Int.
Ed. 2018, 57, 5492.
(22) Ung, G.; Mendoza-Espinosa, D.; Bertrand, G. Ynamides: stable
ligand equivalents of unstable oxazol-4-ylidenes (novel mesoionic
carbenes). Chem. Commun. 2012, 48, 7088.
(23) Trace copper may be responsible for this degradation. See:
Wilkerson-Hill, S. M.; Yu, D.; Painter, P. P.; Fisher, E. L.; Tantillo, D.
J.; Sarpong, R.; Hein, J. E. Mechanism of a No-Metal-Added
Heterocycloisomerization of Alkynylcyclopropylhydrazones: Synthe-
sis of Cycloheptane-Fused Aminopyrroles Facilitated by Copper Salts
at Trace Loadings. J. Am. Chem. Soc. 2017, 139, 10569.
(10) (a) Witulski, B.; Stengel, T. N-functionalized 1-alkynylamides:
New building blocks for transition metal mediated inter- and
intramolecular [2 + 2 + 1] cycloadditions. Angew. Chem., Int. Ed.
1998, 37, 489. (b) Marion, F.; Courillon, C.; Malacria, M. Radical
Cyclization Cascade Involving Ynamides: An Original Access to
Nitrogen-Containing Heterocycles. Org. Lett. 2003, 5, 5095.
(c) Demmer, C. S.; Evano, G. A Simple Entry to Yne-amides from
Yne-oxazolidinones. Synlett 2016, 27, 1873.
(11) (a) Jouvin, K.; Coste, A.; Bayle, A.; Legrand, F.; Karthikeyan,
G.; Tadiparthi, K.; Evano, G. Copper-Mediated Selective Cross-
Coupling of 1,1-Dibromo-1-alkenes and Heteronucleophiles: Devel-
opment of General Routes to Heterosubstituted Alkynes and Alkenes.
Organometallics 2012, 31, 7933. (b) For a recent example, see:
Alexander, J. R.; Cook, M. J. Formation of Ketenimines via the
Palladium-Catalyzed Decarboxylative π-Allylic Rearrangement of N-
Alloc Ynamides. Org. Lett. 2017, 19, 5822.
(12) Witulski, B.; Stengel, T. Rhodium(I)-Catalyzed [2 + 2 + 2]
Cycloadditions with N-Functionalized 1-Alkynylamides: A Concep-
E
Org. Lett. XXXX, XXX, XXX−XXX