Communication
ChemComm
K. Jouvin and A. Coste, Synthesis, 2013, 17–26; (c) Y. Zhang,
K. A. DeKorver, H. Y. Li, A. G. Lohse, R. Hayashi, Z. J. Lu and
R. P. Hsung, Chem. Rev., 2010, 110, 5064–5106; (d) G. Evano, A. Coste
and K. Jouvin, Angew. Chem., Int. Ed., 2010, 49, 2840–2859; (e) For recent
5 (a) A. Coste, G. Karthikeyan, F. Couty and G. Evano, Angew. Chem.,
Int. Ed., 2009, 48, 4381–4385; (b) Y. Yang, X. Zhang and Y. Liang,
Tetrahedron Lett., 2012, 53, 6557–6560; (c) K. Jouvin, A. Coste,
A. Bayle, F. Legrand, G. Karthikeyan, K. Tadiparthi and G. Evano,
Organometallics, 2012, 31, 7933–7947; (d) M. G. Wang, J. Wu and
Z. C. Shang, Synlett, 2012, 589–594.
6 For limitations of bromoalkyne and 1,1-dibromoalkene methods,
see ref. 4d and 5c. Danheiser’s combination of carbamate anions
and bromoalkynes successfully affords ynamides at room tempera-
ture (20 h), albeit requiring a full equivalent of CuI and KHMDS; see
ref. 4b.
7 For the synthesis of relatively unstable ynamines from dialkylamide
anions and dihaloacetylenes, see: (a) H. G. Viehe and M. Reinstein,
Angew. Chem., Int. Ed., 1964, 3, 506; (b) H. G. Viehe, Angew. Chem.,
Int. Ed., 1967, 6, 767–778; (c) R. van der Heiden and L. Brandsma,
Synthesis, 1987, 76–77; (d) R. V. Joshi, Z. Q. Xu, M. B. Ksebati,
D. Kessel, T. H. Corbett, J. C. Drach and J. Zemlicka, J. Chem. Soc.,
´
examples of ynamide methodology, see: C. Theunissen, B. Metayer,
N. Henry, G. Compain, J. Marrot, A. Martin-Mingot, S. Thibaudeau and
G. Evano, J. Am. Chem. Soc., 2014, 136, 12528–12531; ( f ) S. N. Karad and
R.-S. Liu, Angew. Chem., Int. Ed., 2014, 53, 9072–9076; (g) B. Peng,
X. Huang, L.-G. Xie and N. Maulide, Angew. Chem., Int. Ed., 2014, 53,
8718–8721; (h) H. A. Laub, G. Evano and H. Mayr, Angew. Chem., Int. Ed.,
2014, 53, 4968–4971; (i) Z. Xin, S. Kramer, J. Overgaard and
T. Skrydstrup, Chem. – Eur. J., 2014, 20, 7926–7930; ( j) H. V. Adcock,
T. Langer and P. W. Davies, Chem. – Eur. J., 2014, 20, 7262–7266;
(k) P. Zhang, A. M. Cook, Y. Liu and C. Wolf, J. Org. Chem., 2014, 79,
4167–4173; (l) M. D. Santos and P. W. Davies, Chem. Commun., 2014, 50,
6001–6004; (m) A. M. Cook and C. Wolf, Chem. Commun., 2014, 50,
3151–3154; (n) S. K. Pawar, D. Vasu and R.-S. Liu, Adv. Synth. Catal.,
2014, 356, 2411–2416.
´
Perkin Trans. 1, 1994, 1089–1098; (e) J. Balsells, J. Vazquez,
`
2 (a) For work from our group, see: C. D. Campbell, R. L. Greenaway,
O. T. Holton, H. A. Chapman and E. A. Anderson, Chem. Commun.,
2014, 50, 5187–5189; (b) P. R. Walker, C. D. Campbell, A. Suleman,
G. Carr and E. A. Anderson, Angew. Chem., Int. Ed., 2013, 52,
9139–9143; (c) R. L. Greenaway, C. D. Campbell, H. A. Chapman
and E. A. Anderson, Adv. Synth. Catal., 2012, 354, 3187–3194;
(d) R. L. Greenaway, C. D. Campbell, O. T. Holton, C. A. Russell
and E. A. Anderson, Chem. – Eur. J., 2011, 17, 14366–14370.
3 (a) T. Hamada, X. Ye and S. S. Stahl, J. Am. Chem. Soc., 2008, 130,
833–835; (b) X. J. Jin, K. Yamaguchi and N. Mizuno, Chem. Commun.,
2012, 48, 4974–4976.
A. Moyano, M. A. Pericas and A. Riera, J. Org. Chem., 2000, 65,
7291–7302; ( f ) L. M. Geary and P. G. Hultin, Org. Lett., 2009, 11,
5478–5481.
8 For the equivalent chemistry of potassium alkoxides: A. Moyano,
F. Charbonnier and A. E. Greene, J. Org. Chem., 1987, 52, 2919–2922.
9 For reaction of phenols under these conditions, see: Z. S. Sales and
N. S. Mani, J. Org. Chem., 2009, 74, 891–894.
10 (a) For the formation of dichloroacetylene under these conditions, see:
A. Jonczyk and K. Michalski, Synlett, 2002, 1703–1705; (b) J. Pielichowski
and D. Bogdal, J. Prakt. Chem., 1989, 331, 145–148.
11 The structures of 2a and 2t were determined by single crystal X-ray
diffraction. See the ESI† (CIF) for more details; CCDC 1022574 and
1022575.
4 (a) M. O. Frederick, J. A. Mulder, M. R. Tracey, R. P. Hsung, J. Huang,
K. C. M. Kurtz, L. C. Shen and C. J. Douglas, J. Am. Chem. Soc., 2003, 125,
2368–2369; (b) J. R. Dunetz and R. L. Danheiser, Org. Lett., 2003, 5, 12 (a) Although 2,2-dichloroenamides have been shown to be precur-
4011–4014; (c) Y. Zhang, R. P. Hsung, M. R. Tracey, K. C. M. Kurtz and
E. L. Vera, Org. Lett., 2004, 6, 1151–1154; (d) X. Zhang, Y. Zhang, J. Huang,
R. P. Hsung, K. C. M. Kurtz, J. Oppenheimer, M. E. Petersen,
I. K. Sagamanova, L. Shen and M. R. Tracey, J. Org. Chem., 2006, 71,
4170–4177; (e) K. Dooleweerdt, H. Birkedal, T. Ruhland and T. Skrydstrup,
sors to ynamides, their synthesis (via dichloroolefination of forma-
mides using excess PPh3/CCl4) is significantly more challenging;
see: D. Bru¨ckner, Synlett, 2000, 1402–1404; (b) D. Bru¨ckner, Tetra-
hedron, 2006, 62, 3809–3814; (c) S. Couty, M. Barbazanges, C. Meyer
and J. Cossy, Synlett, 2005, 905–910.
J. Org. Chem., 2008, 73, 9447–9450; ( f ) F. M. Istrate, A. K. Buzas, 13 See the ESI† for details of reaction optimisation for ynamide
I. D. Jurberg, Y. Odabachian and F. Gagosz, Org. Lett., 2008, 10,
925–928; (g) K. Jouvin, F. Couty and G. Evano, Org. Lett., 2010, 12,
3272–3275; (h) W. Jia and N. Jiao, Org. Lett., 2010, 12, 2000–2003; 14 (a) D. Rodrıguez, M. F. Martınez-Esperon, L. Castedo and C. Saa,
synthesis, and for the isolation of a chloroynamide intermediate
from treatment of 2a with 1.2 equiv. PhLi or LiHMDS.
´
´
´
´
(i) K. Jouvin, J. Heimburger and G. Evano, Chem. Sci., 2012, 3, 756–760;
( j) For an iron-catalyzed approach, see: B. Yao, Z. Liang, T. Niu and
Y. Zhang, J. Org. Chem., 2009, 74, 4630–4633; (k) Y. Tokimizu, S. Oishi,
N. Fujii and H. Ohno, Org. Lett., 2014, 16, 3138–3141; (l) For large scale
Synlett, 2007, 1963; (b) R. Qi, X. N. Wang, K. A. DeKorver, Y. Tang,
C. C. Wang, Q. Li, H. Li, M. C. Lv, Q. Yu and R. P. Hsung, Synthesis,
2013, 1749–1758; (c) X. N. Wang, R. P. Hsung, R. Qi, S. K. Fox and
M. C. Lv, Org. Lett., 2013, 15, 2514–2517; see also ref. 1k and m.
applications, see: A. L. Kohnen, J. R. Dunetz and R. L. Danheiser, Org. 15 (a) S. Kim and M. L. Joo, Tetrahedron Lett., 1990, 31, 7627–7630; (b) For a
Synth., 2007, 84, 88–101; (m) I. K. Sagamanova, K. C. M. Kurtz and
R. P. Hsung, Org. Synth., 2007, 84, 359–367; (n) A. Coste, F. Couty and
G. Evano, Org. Synth., 2010, 87, 231–244; (o) For pioneering work using 16 (a) M. F. Martınez-Esperon, D. Rodrıguez, L. Castedo and C. Saa,
review, see: S. Fujimori, T. F. Knopfel, P. Zarotti, T. Ichikawa, D. Boyall
and E. M. Carreira, Bull. Chem. Soc. Jpn., 2007, 80, 1635–1657.
´
´
´
´
alkynyliodonium salts, see: B. Witulski and T. Stengel, Angew. Chem.,
Int. Ed., 1998, 37, 489–492.
Tetrahedron, 2006, 62, 3843–3855; (b) D. Rodriguez, L. Castedo and
C. Saa, Synlett, 2004, 783–786.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2014