5 K. D. Troev, Chemistry and Application of H-Phosphonates,
Elsevier, Amsterdam, 2006.
6 R. Hirschmann, A. B. Smith III, C. M. Taylor, P. A. Benkovic,
S. D. Taylor, K. M. Yager, P. A. Sprengeler and S. J. Benkovic,
Science, 1994, 265, 234.
7 (a) J. G. Allen, F. R. Atherton, M. J. Hall, C. H. Hassal,
S. W. Holmes, R. W. Lambert, L. J. Nisbet and P. S. Ringrose,
Nature, 1978, 272, 56; (b) F. R. Atherton, C. H. Hassall and
R. W. Lambert, J. Med. Chem., 1986, 29, 29.
8 S. S. Reddy, A. U. R. Sankar, C. N. Raju and V. K. Rao, S. Afr. J.
Chem., 2008, 61, 97.
(f) S. Enthaler, K. Junge and M. Beller, Angew. Chem., Int. Ed.,
2008, 47, 3317; (g) C. Bolm, J. Legros, J. Le Paih and L. Zani,
Chem. Rev., 2004, 104, 6217.
19 Fe-catalyzed C(sp3)–H bond activation of (a) benzylic positions:
Z. Li, L. Cao and C.-J. Li, Angew. Chem., Int. Ed., 2007, 46, 6505;
(b) Y.-Z. Li, B.-J. Li, X.-Y. Lu, S. Lin and Z.-J. Shi, Angew. Chem.,
Int. Ed., 2009, 48, 3817; (c) positions adjacent to heteroatoms:
Z. Li, R. Yu and H. Li, Angew. Chem., Int. Ed., 2008, 47, 7497;
(d) C. M. Rao Volla and P. Vogel, Org. Lett., 2009, 11, 1701.
20 W. Han and A. R. Ofial, Chem. Commun., 2009, 5024.
21 (a) Handbook of C–H Transformations: Applications in Organic
Synthesis, ed. G. Dyker, Wiley-VCH, Weinheim, 2005;
(b) M. Tobisu and N. Chatani, Angew. Chem., Int. Ed., 2006, 45,
683; (c) F. Kakiuchi and N. Chatani, Adv. Synth. Catal., 2003, 345,
1077.
9 L. Maier and P. J. Diel, Phosphorus, Sulfur Silicon Relat. Elem.,
1991, 57, 57.
10 (a) M. I. Kabachnik and T. Y. Medved, Dokl. Akad. Nauk SSSR,
1952, 83, 689; (b) E. K. Fields, J. Am. Chem. Soc., 1952, 74, 1528;
(c) A. N. Pudovik, Dokl. Akad. Nauk SSSR, 1952, 83, 865;
(d) A. N. Pudovik and I. V. Konovalova, Synthesis, 1979, 81.
11 (a) S. Bhagat and A. K. Chakraborti, J. Org. Chem., 2007, 72, 1263;
(b) J. Wu, W. Sun, H.-G. Xia and X. Sun, Org. Biomol. Chem., 2006,
4, 1663; see also references quoted in these articles; (c) S. M. Vahdat,
R. Baharfar, M. Tajbakhsh, A. Heydari, S. M. Baghbanian and
S. Khaksar, Tetrahedron Lett., 2008, 49, 6501.
22 O. Basle
23 Reviews: (a) C.-J. Li, Acc. Chem. Res., 2009, 42, 335;
(b) C. I. Herrerıas, X. Yao, Z. Li and C.-J. Li, Chem. Rev., 2007,
´
and C.-J. Li, Chem. Commun., 2009, 4124.
´
107, 2546; (c) K. R. Campos, Chem. Soc. Rev., 2007, 36, 1069;
(d) Z. Li, D. S. Bohle and C.-J. Li, Proc. Natl. Acad. Sci. U. S. A.,
2006, 103, 8928; (e) C.-J. Li and Z. Li, Pure Appl. Chem., 2006, 78,
´
935; Recent developments: ; (f) L. Zhao, O. Basle and C.-J. Li,
Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 4106.
12 I. P. Beletskaya and M. M. Kabachnik, Mendeleev Commun., 2008,
18, 113.
24 The use of other solvents under analogous reaction conditions
resulted in lower isolated yields of 2: dichloromethane (29%),
acetonitrile (47%), ethanol (34%), propan-2-ol (26%), tert-
butanol (21%).
13 Review: M. Ordo
Tetrahedron, 2009, 65, 17.
14 Reviews: (a) P. Merino, E. Marque
´
nez, H. Rojas-Carbrera and C. Cativiela,
´
s-Lopez and R. P. Herrera,
´
Adv. Synth. Catal., 2008, 350, 1195; (b) H. Groger and B. Hammer,
Chem.–Eur. J., 2000, 6, 943.
25 Previously, methanol was described to be the solvent of choice also
for other metal-catalyzed oxidative couplings: (a) S.-I. Murahashi,
T. Nakae, H. Terai and N. Komiya, J. Am. Chem. Soc., 2008, 130,
¨
15 Recent developments: (a) J. P. Abell and H. Yamamoto, J. Am.
Chem. Soc., 2008, 130, 10521; (b) X. Cheng, R. Goddard, G. Buth
and B. List, Angew. Chem., Int. Ed., 2008, 47, 5079; (c) X. Zhou,
D. Shang, Q. Zhang, L. Lin, X. Liu and X. Feng, Org. Lett., 2009,
11, 1401; (d) T. Akiyama, H. Morita, J. Itoh and K. Fuchibe,
Org. Lett., 2005, 7, 2583; (e) G. D. Joly and E. N. Jacobsen, J. Am.
Chem. Soc., 2004, 126, 4102.
11005; (b) O. Basle and C.-J. Li, Green Chem., 2007, 9, 1047;
´
(c) Y. Shen, Z. Tan, D. Chen, X. Feng, M. Li, C.-C. Guo and
C. Zhu, Tetrahedron, 2008, 65, 158; (d) D. Sureshkumar,
A. Sud and M. Klussmann, Synlett, 2009, 1558; (e) A. Sud,
D. Sureshkumar and M. Klussmann, Chem. Commun., 2009, 3169.
26 Additionally, copper(I) salts were tested as catalysts (10 mol%).
However, they were less efficient than iron salts under analogous
reaction conditions (CuCl gave 51% and CuBr 46% isolated yields
of 2).
27 After 24 h at 60 1C residual N-phenylpyrrolidine and only 21% of
the corresponding a-phosphonation product were detected by
GC-MS.
28 We observed the quantitative consumption of N-phenyl-1,2,3,4-
tetrahydroisoquinoline (24 h, rt). However, a complex product
mixture was obtained, and we could not isolate the corresponding
a-aminophosphonate from the reaction of the amine with
HP(O)(OEt)2.
16 T. Shono, Tetrahedron, 1984, 40, 811.
17 (a) G. Bidan and M. Genies, Tetrahedron, 1981, 37, 2297;
(b) G. Bidan, M. Genies and R. Renaud, Electrochim. Acta,
1981, 26, 275; (c) F. Effenberger and H. Kottmann, Tetrahedron,
1985, 41, 4171.
18 Reviews on iron catalysis in organic synthesis: (a) A. Furstner,
¨
Angew. Chem., Int. Ed., 2009, 48, 1364; (b) B. D. Sherry and
A. Furstner, Acc. Chem. Res., 2008, 41, 1500; (c) Iron Catalysis in
¨
Organic Chemistry, ed. B. Plietker, Wiley-VCH, Weinheim, 2008;
(d) A. Correa, O. Garcia Mancheno and C. Bolm, Chem. Soc. Rev.,
2008, 37, 1108; (e) E. B. Bauer, Curr. Org. Chem., 2008, 12, 1341;
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 6023–6025 | 6025