Organometallics 2009, 28, 6629–6631 6629
DOI: 10.1021/om900701n
Reactivity of Diazoalkanes with Tantalum(V) Complexes of a Tridentate
Amido-Bis(phenolate) Ligand
Ryan A. Zarkesh and Alan F. Heyduk*
Department of Chemistry, University of California, Irvine, California 92697
Received August 7, 2009
Summary: While a dimethyltantalum(V) complex of the
[ONO
cat 3- ligand ([ONOcat]H3 = N,N-bis(3,5-di-tert-butyl-
have been able to realize halogen oxidative addition4 and
carbon-carbon reductive elimination5 reactions at Zr(IV)
centers, despite formal d0 electron counts. More recently, we
developed the chemistry of a redox-active tris(amide) ligand
with tantalum(V) and showed that the ligand could act as a
two-electron reservoir, enabling the transfer of a nitrene
group from an organic azide to the tantalum center to form
a new tantalum imide;6 however, sterics seemed to preclude
an analogous reaction to form the tantalum alkylidene from
the corresponding diazoalkane.7 To reduce the steric de-
mands of the redox-active ligand, we turned to the tridentate
]
2-phenol)amine) reacted with diazoalkane to afford products
of insertion into the Ta-Me bond, the dichlorotantalum(V)
complex [ONOcat]TaCl2(OEt2) reacted with 2 equiv of
Ph2CN2 to form the ketazine adduct [ONOcat]TaCl2(η2(N,N0)-
Ph2CdNNdCPh2). When Ph2CN2 was added to the dichlo-
ride in neat styrene, catalytic carbene transfer was observed to
form the corresponding cyclopropane
Interactions of diazoalkanes with transition-metal com-
plexes lead to varied reactivity, depending on the electronic
properties of the diazoalkane and the formal charge on the
metal center.1 Addition of diazoalkanes to electron-rich
transition-metal complexes has proven to be a useful strategy
for the generation of transition-metal carbene function-
alities.2 Studies carried out on the reaction of diazoalkanes
with various copper(I) complexes revealed N2 expulsion
from the diazoalkane to generate a putative copper carbene
that then transfers the carbene fragment to unsaturated
carbon-carbon double bonds, generating cyclopropanes.3
Given the importance of metal valence electrons in stabi-
lizing the carbene and alkylidene resonance structures shown
in eq 1, we hypothesized that a redox-active ligand might
allow us to generate reactive metal-carbene functionalities
for formally d0 transition metal complexes. By incorporating
a redox-active ligand in a d0 metal coordination sphere, we
[ONO ]
cat 3- ligand platform ([ONOcat]H3 = N,N-bis(3,5-di-
tert-butyl-2-phenol)amine),8 which also displays two-elec-
tron reactivity on coordination to tantalum(V).9
The tantalum(V) dimethyl complex [ONOcat]TaMe2 (1)
reacted with diazoalkane to afford the product of 1,1-inser-
tion into the tantalum-methyl bond, as has been observed
for other d0 metal alkyls.10 Hence, the addition of 1 equiv of
Ph2CN2 to 1 resulted in the formation of [ONOcat]TaMe-
{η2(N,N0)-NMeNdCPh2} (2) in nearly quantitative yields,
as shown in Scheme 1. Compound 2 was characterized
by NMR and IR spectroscopy. Equal-intensity singlet reso-
1
nances at 2.78 and 1.30 ppm in the H NMR spectrum are
indicative of N-CH3 and Ta-CH3 groups, respectively. The
IR spectrum shows a diagnostic stretch for the hydrazonato
ligand at 1164 cm-1. When 2 equiv of Ph2CN2 was added
to 1, the double-insertion product [ONOcat]Ta{η2(N,N0)-
NMeNdCPh2}2 (3) was obtained as a dark red microcrystal-
*To whom correspondence should be addressed. E-mail: aheyduk@
uci.edu.
(1) (a) Dartiguenave, M.; Menu, M. J.; Deydier, E.; Dartiguenave,
Y.; Siebald, H. Coord. Chem. Rev. 1998, 178-180, 623–663. (b) Polse,
J. L.; Kaplan, A. W.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc.
1998, 120, 6316–6328.
1
line product. The H NMR spectrum of 3 did not show a
(2) (a) Li, Y.; Huang, J. S.; Zhou, Z. Y.; Che, C. M. J. Am. Chem. Soc.
Ta-CH3 resonance, but instead, a singlet at 2.94 ppm
integrating as six protons was consistent with two N-CH3
groups of equivalent hydrazonato ligands.
2001, 123, 4843–4844. (b) Li, Y.; Huang, J. S.; Zhou, Z. Y.; Che, C. M.; You,
€
X. Z. J. Am. Chem. Soc. 2002, 124, 896–897. (c) Pfeiffer, J.; Dotz, K. H.
Organometallics 1998, 17, 4353–4361. (d) Waterman, R.; Hillhouse, G. L.
J. Am. Chem. Soc. 2003, 125, 13350–13351. (e) Zhang, J.; Gandelman, M.;
Shimon, L. J. W.; Milstein, D. Organometallics 2008, 27, 3526–3533.
(f) Dai, X.; Warren, T. H. J. Am. Chem. Soc. 2004, 126, 10085–10094.
(g) Che, C. M.; Huang, J. S.; Lee, F. W.; Li, Y.; Lai, T. S.; Kwong, H. L.; Teng,
P. F.; Lee, W. S.; Lo, W. C.; Peng, S. M.; Zhou, Z. Y. J. Am. Chem. Soc. 2001,
123, 4119–4129. (h) Shishkov, I. V.; Rominger, F.; Hofmann, P. Organo-
metallics 2009, 28, 1049–1059. (i) Mindiola, D. J.; Hillhouse, G. L. J. Am.
Chem. Soc. 2002, 124, 9976–9977.
(5) Haneline, M. R.; Heyduk, A. F. J. Am. Chem. Soc. 2006, 128,
8410–8411.
(6) Nguyen, A. I.; Blackmore, K. J.; Carter, S. M.; Zarkesh, R. A.;
Heyduk, A. F. J. Am. Chem. Soc. 2009, 131, 3307–3316.
(7) For a discussion of steric effects on the formation of metal-
alkylidene complexes from diazoalkanes see: Cohen, R.; Rybtchinski,
B.; Gandelman, M.; Rozenberg, H.; Martin, J. M. L.; Milstein, D.
J. Am. Chem. Soc. 2003, 125, 6532–6546.
(3) (a) Kirmse, W. Angew. Chem., Int. Ed. 2003, 42, 1088–1093.
€
(b) Pfeiffer, J.; Nieger, M.; Dotz, K. H. Eur. J. Org. Chem. 1998, 1011–
1022. (c) Díaz-Requejo, M. M.; Belderrain, T. R.; Nicasio, M. C.; Prieto,
F.; Perez, P. J. Organometallics 1999, 18, 2601–2609. (d) Baratta, W.;
(8) Girgis, A. Y.; Balch, A. L. Inorg. Chem. 1975, 14, 2724–2727.
(9) Zarkesh, R. A.; Ziller, J. W.; Heyduk, A. F. Angew. Chem., Int.
Ed. 2008, 47, 4715–4718.
(10) (a) Serrano, R.; Flores, J. C.; Royo, P.; Mena, M.; Pellinghelli, M.
A.; Tiripicchio, A. Organometallics 1989, 8, 1404–1408. (b) Gambarotta, S.;
Basso-Bert, M.; Floriani, C.; Guastini, C. J. Chem. Soc., Chem. Commun.
1982, 374–375. (c) Cantat, T.; Graves, C. R.; Jantunen, K. C.; Burns, C. J.; Scott,
B. L.; Schelter, E. J.; Morris, D. E.; Hay, P. J.; Kiplinger, J. L. J. Am. Chem. Soc.
2008, 130, 17537–17551.
ꢀ
Herrmann, W. A.; Kratzer, R. M.; Rigo, P. Organometallics 2000, 19,
3664–3669. (e) Werner, H.; Schneider, M. E.; Bosch, M.; Wolf, J.; Teuben,
J. H.; Meetsma, A.; Troyanov, S. I. Chem. Eur. J. 2000, 6, 3052–3059.
(f) Hamaker, C. G.; Mirafzal, G. A.; Woo, L. K. Organometallics 2001, 20,
5171–5176.
(4) Blackmore, K. J.; Ziller, J. W.; Heyduk, A. F. Inorg. Chem. 2005,
44, 5559–5561.
r
2009 American Chemical Society
Published on Web 11/10/2009
pubs.acs.org/Organometallics