Aromatic and Benzylic C–H Bonds Functionalization
Table 2. Reaction of p-tolyltrifluoromethyl sulfoxide with aromatic sulfonic anhydride activation enables chemical diversity
nitriles.[a]
(perfluoroalkylated sulfilimines, perfluoroalkyl sulfanyl ace-
tonitriles, as well as benzamides) through aromatic or (re-
mote) benzylic carbon–hydrogen bond functionalization.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures and copies of the NMR spectra for
all new compounds.
Acknowledgments
Entry
R
1, Yield [%][b] 8, Yield [%][b]
Y. M. thanks GlaxoSmithKline and the Centre National de la Re-
cherche Scientifique (CNRS) for financial support (BDI grant),
and C. U. thanks the French Ministry of Research for a PhD grant.
1
H
H
H
p-Me
p-Me
p-Me
p-Br
o-Br
p-NO2
m-NO2
1j, 56
1j, 68
1j, 4
8a, 2
2[c]
3[d]
4
8a, 2
8a, 12
8b, trace
8b, 0
1k, 57
1k, 61
1k, 16
1l, 12
1m, 4
1n, 0
5[c]
6[d]
7
[1] a) J. T. Welch, S. Eswarakrishnan in Fluorine in Bioorganic
Chemistry, Wiley, New York, 1991; b) R. E. Banks, B. E.
Smart, J. C. Tatlow in Organofluorine Chemistry, Principles and
Commercial Applications, Plenum, New York, 1994; c) T. Hi-
yama in Organofluorine Compounds, Chemistry and Applica-
tions, Springer, Berlin, 2000; d) P. Kirsch in Modern Fluoroor-
ganic Chemistry, Wiley-VCH, Weinheim, 2004; e) K. Uneyama
in Organofluorine Chemistry, Blackwell Publishing, Oxford,
2006.
8b, 0
8c, 15
8d, 41
8e, 19
8f, 29
8
9
10
1o, 0
[a] Experimental conditions: 0–5 °C, 5 h, unless otherwise noted.
[b] Isolated yields. [c] Experimental conditions: –15 °C, 24 h.
[d] Experimental conditions: r.t., 24 h.
[2] a) Y. Shermolovich, V. Timoshenko, J. Fluorine Chem. 2002,
114, 157–161; b) E. Magnier, M. Tordeux, R. Goumont, K.
Magder, C. Wakselman, J. Fluorine Chem. 2003, 124, 55–59; c)
J. Moïse, R. Goumont, E. Magnier, C. Wakselman, Synthesis
2004, 14, 2297–2303.
[3] a) C. Magnier-Bouvier, J.-C. Blazejewski, C. Larpent, E. Magn-
ier, Tetrahedron Lett. 2006, 47, 9121–9124; b) A. de Castries,
E. Magnier, S. Monmotton, H. Fensterbank, C. Larpent, Eur.
J. Org. Chem. 2006, 20, 4685–4692.
[4] a) G. K. S. Prakash, J. Hu, G. A. Olah, J. Org. Chem. 2003, 68,
4457–4463; b) G. K. S. Prakash, J. Hu, G. A. Olah, Org. Lett.
2003, 5, 3253–3256; c) G. K. S. Prakash, J. Hu, Acc. Chem. Res.
2007, 40, 921–930; d) W. Zhang, F. Wang, J. Hu, Org. Lett.
2009, 11, 2109–2112.
Scheme 4. Proposed benzamides 8 formation.
[5] a) T. Umemoto, Chem. Rev. 1996, 96, 1757–1777; b) J. J. Yang,
R. L. Kirchmeier, J. M. Shreeve, J. Org. Chem. 1998, 63, 2656–
2660; c) E. Magnier, J.-C. Blazejewski, M. Tordeux, C. Waksel-
man, Angew. Chem. Int. Ed. 2006, 45, 1279–1282; d) S. Nori-
take, N. Shibata, S. Nakamura, T. Toru, M. Shiro, Eur. J. Org.
Chem. 2008, 3465–3468; e) Y. Macé, B. Raymondeau, C. Pra-
det, J.-C. Blazejewski, E. Magnier, Eur. J. Org. Chem. 2009,
1390–1397.
the highly electrophilic benzologous Pummerer-like inter-
mediate 9.[9] Further efficient reaction of 9 with nitrile
(either stepwise or concerted as shown in Scheme 4 for con-
venience), may then give rise, after hydrolysis, to observed
benzamides 8, involving the functionalization of a remote
benzylic carbon–hydrogen bond in a coupled Pummerer/
Ritter cascade.
According to this mechanism, more deactivated nitrile
groups should give benzamides 8 in better yields and this
was observed in our experiments (Table 2, Entries 7–10). In
fact, activated intermediate 4 being not immediately cap-
tured at the sulfur center by the nitrile enjoys ample time
to be converted into highly reactive species 9.
[6] Y. Macé, C. Urban, C. Pradet, J. Marrot, J.-C. Blazejewski, E.
Magnier, Eur. J. Org. Chem. 2009, 3150–3153.
[7] In the nonfluorinated series, such intermediates were exten-
sively used in the field of carbohydrate chemistry: a) B. A. Gar-
cia, J. L. Poole, D. Y. Gin, J. Am. Chem. Soc. 1997, 119, 7597–
7598; b) D. Crich, M. Smith, J. Am. Chem. Soc. 2001, 123,
9015–9020; c) J. D. C. Code, R. E. J. N. Litjens, R. den Heeten,
S. Overkleeft, J. H. van Boom, G. A. van der Marel, Org. Lett.
2003, 5, 1519–1522.
[8] a) R. D. Howells, J. D. Mc Cown, Chem. Rev. 1977, 77, 69–
92; b) I. L. Baraznenok, V. G. Nenajdenko, E. S. Balenkova,
Tetrahedron 2000, 56, 3077–3119.
[9] a) K. S. Feldman, Tetrahedron 2006, 62, 5003–5034; b) S. Akai,
Y. Kita, Top. Curr. Chem. 2007, 274, 35–76.
[10] a) Some compounds related to 5 were prepared in the patent
literature by another method: R. Lantzsch, A. Marhold, W.
Behrenz, I. Hammann U. S. Patent 4438275, 1984; b) com-
pound 5a is commercially available but we were unable to track
down its origin in the literature (CAS registry number: 237424–
20–3).
Conclusions
In summary, fine-tuning of the experimental conditions
and substrate choice during the reaction of perfluoroalk-
ylated sulfoxides with nitriles under trifluoromethane-
Eur. J. Org. Chem. 2009, 5313–5316
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
5315