LETTER
Formal Total Synthesis of (–)-Didemniserinolipid B
2595
R.; Gandi, V. Tetrahedron: Asymmetry 2008, 19, 2616.
(f) Prasad, K. R.; Chandrakumar, A. J. Org. Chem. 2007, 72,
6312. (g) Prasad, K. R.; Dhaware, M. Synthesis 2007, 3697.
(h) Prasad, K. R.; Gholap, S. L. J. Org. Chem. 2006, 71,
3643.
O
OBn
OMe
7
O
4
Grubbs II (15 mol%)
CH2Cl2, reflux, 24 h, 80%
BnO
O
5
(7) Formation of minor amount (8%) of diketone resulting from
the addition of Grignard reagent to both amide groups is
observed.
11
i) H2, Pd/C, NaHCO3
hexane, 5 h, 76%
OBn
O
(8) Diastereomeric ratio of the product alcohol was estimated to
be >95:5 within detectable limits by 1H NMR. Alcohols
were inseparable at this stage. However, stereochemistry of
the alcohol is of no consequence because it is deoxygenated
in the next step.
O
OMe
ii) LiAlH4, THF, 0 °C
1 h, 96%
4
8
BnO
BnO
O
12
5
OBn
i) MsCl, Et3N, CH2Cl2, 0 °C, 0.5 h
(9) Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin
Trans. 1 1975, 1574.
O
ii)
NaH, DMSO
0 °C to r.t., 5 h
56% for two steps
OH
HO
Boc
13
(10) For FeCl3-mediated deprotection of acetals, see: (a) Sen,
S. E.; Roach, S. L.; Boggs, J. K.; Ewing, G. J.; Magrath, J.
J. Org. Chem. 1997, 62, 6684. (b) Prasad, K. R.;
O
O
N
5
13
14
Chandrakumar, A. Tetrahedron: Asymmetry 2005, 16,
1897. (c) Ref. 5 and 6
OBn
H2, Pd(OH)2/C
(11) It was cumbersome to purify the cross-metathesis product 12
by column chromatography from traces of an unidentified
impurity. However, this was of no consequence in the next
reaction sequence, and pure 13 was isolated after the
reduction of the olefin and the ester.
(12) All new compounds exhibited satisfactory spectral data. In
the NMR data that follow, * indicates rotamer peaks.
Compound 3: [a]D +8.7 (c 1.3, CHCl3). IR (neat): 2940,
2863, 1716, 1652, 1506, 1374 cm–1. 1H NMR (400 MHz,
CDCl3): d = 7.40–7.24 (m, 5 H), 5.13 (d, J = 6.0 Hz, 1 H),
4.78 (d, J = 5.7 Hz, 1 H), 4.90 (s, 2 H), 3.47 (t, J = 6.0 Hz, 2
H), 3.13 (s, 3 H), 2.98 (s, 3 H), 2.83–2.56 (m, 2 H), 1.79–1.55
(m, 4 H), 1.42 (s, 3 H). 13C NMR (100 MHz, CDCl3): d =
209.2, 168.1, 138.5, 128.3, 128.3, 127.6, 127.5, 112.1, 82.1,
74.9, 72.9, 69.9, 39.2, 37.0, 36.0, 29.1, 26.4, 26.0, 19.8.
HRMS: m/z calcd for C18H25NO5 + Na: 386.1943; found:
386.1925
O
EtOAc, 1 h
95%
O
Boc
13
O
O
N
BnO
HO
4
15
16
OH
i) DMP, CH2Cl2, 0 °C, 2.5 h
O
ii)
OEt
O
Ph3P
13
O
O
N
17
O
4
Boc
benzene, reflux, 1 h
OH
ref. 4b
1
O
O
13
O
O
N
Boc
CO2Et
18
Compound 13: [a]D –21.2 (c 3, CHCl3). IR (neat): 3448,
2926, 1455, 1097, 734 cm–1. 1H NMR (300 MHz, CDCl3):
d = 7.50–7.10 (m, 10 H), 4.62 (s, 2 H), 4.5 (s, 2 H), 4.17 (br
s, 1 H), 3.90–3.73 (m, 1 H), 3.63 (t, J = 6.6 Hz, 2 H), 3.46 (t,
J = 6.6 Hz, 2 H), 3.29 (br s, 1 H), 2.30 (t, J = 7.5 Hz, 2 H),
2.00–1.15 (m, 40 H). 13C NMR (75 MHz, CDCl3): d = 138.7,
138.5, 128.37, 128.32, 127.63, 127.58, 127.47, 109.3, 80.0,
77.8, 72.8, 72.3, 70.3 (2 C), 63.1, 37.4, 35.3, 32.8, 30.7, 29.8,
29.62, 29.58, 29.41, 26.1, 25.7, 25.4, 22.8, 22.0. HRMS:
m/z calcd for C40H62O5 + Na: 645.4495; found: 645.4484.
Compound 15: [a]D –18.3 (c 0.3, CHCl3). IR (neat): 3069,
2927, 1700, 1454, 1388, 734 cm–1. 1H NMR (400 MHz,
CDCl3): d = 7.50–7.20 (m, 10 H), 4.61 (s, 2 H), 4.49 (s, 2 H),
4.17 (br s, 1 H), 4.10–3.85 (m, 3 H), 3.85–3.70 (m, 1 H),
3.70–3.30 (m, 6 H), 3.29 (br s, 1 H), 2.00–1.15 (m, 55 H).
13C NMR (100 MHz, CDCl3): d = 152.2/151.7*, 138.7/
138.5*, 128.4, 128.35, 127.66, 127.60, 127.5, 109.3, 93.7/
93.3*, 80.1/79.7*, 80.0, 77.8, 72.9, 72.3, 71.4, 70.3 (2 C),
70.1/69.3*, 65.7/65.4*, 56.5/56.4*, 37.43, 35.3, 30.8, 29.8,
29.7, 29.64, 29.60, 29.5, 28.48, 28.43, 27.5/26.8*, 26.11,
26.06, 25.43, 24.4/23.1*, 22.8, 21.96. HRMS: m/z calcd for
C51H81NO8 + Na: 858.5860; found: 858.5861.
Scheme 3 Formal total synthesis of (–)-didemniserinollipid B
References and Notes
(1) Kiyota, H. Top. Heterocycl. Chem. 2006, 5, 65.
(2) Gonzalez, N.; Rodriguez, J.; Jimenez, C. J. Org. Chem.
1999, 64, 5705.
(3) Mitchell, S. S.; Rhodes, D.; Bushman, F. D.; Faulkner, D. J.
Org. Lett. 2000, 2, 1605.
(4) (a) Kiyota, H.; Dixon, D. J.; Luscombe, C. K.; Hettstedt, S.;
Ley, S. V. Org. Lett. 2002, 4, 3223. (b) Marvin, C. C.;
Voight, E. A.; Burke, S. D. Org. Lett. 2007, 9, 5357.
(c) Marvin, C. C.; Voight, E. A.; Suh, J. M.; Paradise, C. L.;
Burke, S. D. J. Org. Chem. 2008, 73, 8452. (d) Ramana, C.
V.; Induvadana, B. Tetrahedron Lett. 2009, 50, 271.
(5) (a) Prasad, K. R.; Anbarasan, P. Tetrahedron Lett. 2006, 47,
1433. (b) Prasad, K. R.; Anbarasan, P. Tetrahedron:
Asymmetry 2006, 17, 850. (c) Prasad, K. R.; Anbarasan, P.
Tetrahedron 2006, 62, 8303. (d) Prasad, K. R.; Anbarasan,
P. Synlett 2006, 2087.
(6) (a) For a general approach to the synthesis of g-keto amides
from tartaric acid, see: Prasad, K. R.; Chandrakumar, A.
Tetrahedron 2007, 63, 1798. (b) Prasad, K. R.; Gholap, S.
L. J. Org. Chem. 2008, 73, 1. (c) Prasad, K. R.; Gholap, S.
L. J. Org. Chem. 2008, 73, 2916. (d) Prasad, K. R.; Swain,
B. Tetrahedron: Asymmetry 2008, 19, 1134. (e) Prasad, K.
Compound 16: [a]D –41.4 (c 1.2, CHCl3) [Lit.4d [a]D +36.3
(c 0.2, CHCl3 for the enantiomer)]. IR (CHCl3): 3463, 2928,
1700, 1389, 1366, 1088, 770 cm–1. 1H NMR (400 MHz,
CDCl3): d = 4.07 (br s, 1 H), 4.05–3.96 (m, 1 H), 3.95–3.86
(m, 3 H), 3.65 (t, J = 6.5 Hz, 2 H), 3.62–3.55 (m, 1 H), 3.54–
3.37 (m, 2 H), 3.36–3.14 (m, 2 H), 2.52–2.30 (m, 1 H), 2.10–
1.81 (m, 1 H), 1.79–1.41 (m, 30 H), 1.38–1.22 (m, 25 H).
13C NMR (100 MHz, CDCl3): d = 152.2/151.7*, 109.6, 93.7/
Synlett 2009, No. 16, 2593–2596 © Thieme Stuttgart · New York