1
(at, 4JPP = 5.5 Hz). 13C{ H} NMR: (CD2Cl2, 300 K): d = 204.15
refinement at calculated positions. In the case of the crystals of
6c[OTf]·0.56CH2Cl2 diffraction was only observed upto an angle
of 22.61◦ using Mo-Ka radiation which may be due to the disorder
observed in the structural solution.
2
4
(td, JPC = 15.4 Hz, 4.18 Hz, Ru–C), 159.95 (d, JPC = 1.6 Hz,
COMe), 142.62 (d, 1JPC = 20.6 Hz, CPPh3 C-1), 138.02 (br, Ru–
PPh3, C1), 134.02, 133.44, 129.51, 129.38, 127.84 (multiplets, Ph),
130.01, 125.07, 119.26, 113.20 (doublets, C6H4-3-OMe), 121.60 (d,
1JPC = 83.6 Hz, C-b), 120.96 (q, JCF 323.8 Hz CF3), 116.52 (d,
1
2JPC = 61.8 Hz, C b-Ph C1), 85.72 (s, C5H5), 55.34 (s, OCH3). FAB
mass spectrum: m/z = 1085 [M+], m/z = 823 [M+ - PPh3], m/z =
561 [M+ - 2PPh3], m/z = 429 [M+ - 2PPh3, HC2PhOMe]. Elemental
Analysis: Expected for C70H60Cl2F3O4P3RuS: C 63.73%, H 4.58%;
Found: C 62.47%, H 4.74%.
Acknowledgements
With thank the EPSRC and University of York for funding (DTA
award to MJC).
Notes and references
5
2
=
Preparation of [Ru(g -C5H5){g -H2C CPh(PPh3)}-
1 (a) M. I. Bruce, Chem. Rev., 1991, 91, 197; (b) H. Werner, J. Organomet.
Chem., 1994, 475, 45; (c) M. C. Puerta and P. Valerga, Coord. Chem.
Rev., 1999, 193–195, 977; (d) Y. Wakatsuki, J. Organomet. Chem., 2004,
689, 4092; (e) V. Cadierno, M. P. Gamasa and J. Gimeno, Coord. Chem.
Rev., 2004, 248, 1627; (f) A. B. Antonova, Coord. Chem. Rev., 2007,
251, 1521.
2 For recent references see: (a) D. B. Grotjahn, X. Zeng and A. L. Coosky,
J. Am. Chem. Soc., 2006, 128, 2798; (b) D. B. Grotjahn, X. Zeng,
A. L. Cooksy, W. S. Kassel, A. G. DiPasquale, L. N. Zakharov and
A. L. Rheingold, Organometallics, 2007, 26, 3385; (c) M. J. Cowley,
J. M. Lynam and J. M. Slattery, Dalton Trans., 2008, 4552; (d) J. M.
Lynam, C. E. Welby and A. C. Whitwood, Organometallics, 2009, 28,
1320; (e) D. B. Grotjahn, V. Miranda-Soto, E. J. Kragulj, D. A. Lev,
G. Erdogan, X. Zeng and A. L. Cooksy, J. Am. Chem. Soc., 2008,
130, 20; (f) M. Bassetti, V. Cadierno, J. Gimeno and C. Pasquini,
Organometallics, 2008, 27, 5009.
3 (a) C. Bruneau and P. H. Dixneuf, Acc. Chem. Res., 1999, 32, 311;
(b) B. M. Trost, M U. Frediksen and M. T. Rudd, Angew. Chem., Int.
Ed., 2005, 44, 6630; (c) C. Bruneau and P. H. Dixneuf, Angew. Chem.,
Int. Ed., 2006, 45, 2176; (d) B. M. Trost and A McClory, Chem.–Asian J.,
2008, 3, 164.
4 For reviews of this area see: (a) M. K. Whittlesey, in Comprehensive
Organometallic Chemistry III, ed. R. H. Crabtree, D. M P. Mingos and
M. I. Bruce, Elsevier, Oxford, U.K., 2006, vol. 6, chapter 6.12; (b) J.
Gimeno and V. Cadierno in Comprehensive Organometallic Chemistry
III, ed. R. H. Crabtree, D. M P. Mingos and M. I. Bruce, Elsevier,
Oxford, U.K., 2006, vol. 6, chapter 6.15.
(C6H4PPh2)][OTf], 8b[OTf]
6b[OTf] (ca. 20 mg) was placed in an NMR tube and dissolved
in C2D2Cl4 (0.5 mL). The solution was heated at 363 K for
30 min. 8b[OTf] was formed in approximately 50% yield (as shown
by 31P{ H} NMR spectroscopy). It was not possible to isolate
1
this complex however characterisation was performed by NMR
1
spectroscopy. H NMR (C2D2Cl4) d = 4.78 (s, C5H5, 5H), 4.64
3
2
3
(ddd, JHP = 22.3 Hz, JHH = 3.8 Hz, JHP = 2.5 Hz), 2.29 (atd,
3JHP = 17.3 Hz, JHH = 3.8 Hz). 31P{ H} (C2D2Cl4, 373 K) d =
2
1
51.48 (d, J = 3.2 Hz), 46.97 (d, J = 3.2 Hz).
5
2
=
Preparation of [Ru(g -C5H5){g -H2C C(C6H4-3-OMe)(PPh3)}-
(C6H4PPh2)][OTf], 8c[OTf]
6c[OTf] (ca. 20 mg) was placed in an NMR tube and dissolved
in C2D2Cl4 (0.5 mL). The solution was heated at 363 K for
30 min. 8c[OTf] was formed in approximately 50% yield (as shown
by 31P{ H} NMR spectroscopy). It was not possible to isolate
1
this complex however characterisation was performed by NMR
spectroscopy. 1H NMR (C2D2Cl4) d = 6.57 (m, 3H, C6H4-3-OMe),
6.88 (m, 1H, C6H4-3-OMe), 4.77 (s, 5H, C5H5), 4.61 (ddd, 3JHP
=
5 (a) F. Paul, B. G. Ellis, M. I. Bruce, L. Toupet, T. Roisnel, K. Costuas,
J.-F. Halet and C. Lapinte, Organometallics, 2006, 25, 649; (b) C. Bitcon
and M. W. Whiteley, J. Organomet. Chem., 1987, 336, 385; (c) N. J. Long
and C. K. Williams, Angew. Chem., Int. Ed., 2003, 42, 2586; (d) W. M.
Khairul, M. A. Fox, N. N. Zaitseva, M. Gaudio, D. S. Yufit, B. W.
Skelton, A. H. White, J. A. K. Howard, M. I. Bruce and P. J. Low,
Dalton Trans., 2009, 610.
22.0, 2JHH = 3.8, 3JHP = 1.5 Hz, =CH2), 3.57 (s. 3H, OMe), 2.17
(ddd, 3JHP = 22.1, 3JHP = 18.2, 2JHH = 3.8 Hz), 31P{ H} d = 52.38
1
(d, JPP = 3.5 Hz), 46.92 (d, JHP = 3.5 Hz) 13C{ H} d = 173.94
3
3
1
(dd, 2JPC = 32.9 Hz, 3JPC = 17.0 Hz) 158.7 (s, C6H4-3-OMe, C3),
2
1
143.7 (d, JCP = 6.4 Hz, C6H4-3-OMe, C1), d 137.36 (d, JPC
=
114.4 Hz, PPh2, C1), 132.72 (d, 1JPC 103.4 Hz, PPh3 C1), 128.8 (s,
C6H4-3-OMe, C6), 122.9 (s, C6H4-3-OMe, C4), 116.1 (s, C6H4-3-
OMe, C5), 112.8 (s, C6H4-3-OMe, C6), 92.52 (s, C5H5), 54.97 (s,
6 (a) C. E. Powell and M. G. Humphrey, Coord. Chem. Rev., 2004,
248, 725; (b) M. A. Fox, R. L. Roberts, T. E. Baines, B. Le Guennic,
J.-F. Halet, F. Hartl, D. S. Yufit, D. Albesa-Jov, J. A. K. Howard and
P. J. Low, J. Am. Chem. Soc., 2008, 130, 3566; (c) M. A. Fox, R. L.
Roberts, W. M. Khairul, F. Hartl and P. J. Low, J. Organomet. Chem.,
2007, 692, 3277; (d) C.-Y. Wong, C.-M. Che, M. C. W. Chan, J. Han,
K.-H. Leung, D. L. Phillips, K.-Y. Wong and N. Zhu, J. Am. Chem.
Soc., 2005, 127, 13997; (e) N. Gauthier, N. Tchouar, F. Justaud, G.
Argouarch, M. P. Cifuentes, L. Toupet, D. Touchard, J.-F. Halet, S.
Rigaut, M. G. Humphrey, K. Costuas and F. Paul, Organometallics,
2009, 28, 2253; (f) C. E. Powell, M. P. Cifuentes, J. P. Morrall, R.
Stranger, M. G. Humphrey, M. Samoc, B. Luther-Davies and G. A.
Heath, J. Am. Chem. Soc., 2003, 125, 602.
OMe) 43.51 (at, 2JPC = 8.2 Hz, CH2).
=
Details of X-ray diffraction experiments
Pertinent data concerning the structural determinations reported
are collected in Table 2. Diffraction data were collected at 110 K on
a Bruker Smart Apex diffractometer with Mo-Ka radiation (l =
˚
0.71073 A) using a SMART CCD camera. Diffractometer control,
7 J. M. Lynam, Dalton Trans., 2008, 4067.
data collection and initial unit cell determination was performed
using “SMART” (v5.625 Bruker-AXS). Frame integration and
unit-cell refinement software was carried out with “SAINT+”
(v6.22, Bruker AXS). Absorption corrections were applied by
SADABS (v2.03, Sheldrick). Structures were solved by direct
methods using SHELXS-97 (Sheldrick, 1997) and refined by
full-matrix least squares using SHELXL-97 (Sheldrick, 1997).
All non-hydrogen atoms were refined anisotropically. Hydrogen
atoms were placed using a “riding model” and included in the
8 M. J. Cowley, J. M. Lynam and A. C. Whitwood, Dalton Trans., 2007,
4427.
9 M. I. Bruce and R. C. Wallis, Aust. J. Chem., 1979, 32, 1471.
10 M. I. Bruce and A. G. Swincer, Aust. J. Chem., 1980, 33, 1471.
11 H. Hamidov, J. C. Jeffery and J. M. Lynam, Chem. Commun., 2004,
1364.
12 J. M. Lynam, T. D. Nixon and A. C. Whitwood, J. Organomet. Chem.,
2008, 693, 3103.
13 (a) R. E. Hurd and B. R. Reid, Nucleic Acids Res., 1977, 4, 2747; (b) J.
Pranata, S. G. Wierschke and W. L. Jorgensen, J. Am. Chem. Soc., 1991,
113, 2810.
This journal is
The Royal Society of Chemistry 2009
Dalton Trans., 2009, 9529–9542 | 9541
©